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GROWTH OF SOLUTIONS TO LINEAR DIFFERENTIAL

EQUATIONS WITH ENTIRE COEFFICIENTS OF

[p, q]-ORDER IN THE COMPLEX PLANE

Nityagopal Biswas and Samten Tamang

Abstract. In the paper, we study the growth and fixed point of solutions
of high order linear differential equations with entire coefficients of [p, q]-

order in the complex plane. We improve and extend some results due to

T. B. Cao, J. F. Xu, Z. X. Chen, and J. Liu, J. Tu, L. Z. Shi.

1. Introduction, definitions and notations

We assume that reader is familiar with the fundamental results and the
standard notations of the Nevanlinna’s theory of meromorphic functions (see
[7], [15]). Let us define inductively, for r ∈ [0,∞), exp1 r = er and expp+1 r =

exp
(
expp r

)
, p ∈ N. For all sufficiently large r,we define log1 r = log r and

logp+1 r = log
(
logp r

)
, p ∈ N. We also denote exp0 r = r = log0 r and

exp−1 r = log1 r and log−1 r = exp1 r. In order to express the rate of growth
of entire functions more precisely, we recall the following definitions (see [10],
[13]):

Definition 1.1. The iterated p-order of an entire function f (z) is defined by

σp (f) = lim
r→∞

logp T (r, f)

log r
= lim
r→∞

logp+1M (r, f)

log r
,

where T (r, f) is the Nevanlinna characteristic function of f and M (r, f) =
max
|z|=r

|f (z)| . For p = 1, this notation is called order and for p = 2 hyper-order.

Definition 1.2. The finiteness degree of the iterated order of an entire function
f (z) is defined by

i (f) =

 0 for f polynomial,
min {j ∈ N : σj (f) <∞} for f transcendental with σj (f) <∞,
∞ for f with σj (f) =∞ for all j ∈ N.
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For k ≥ 2, we consider the complex linear differential equations

(1.1) f (k) +Ak−1 (z) f (k−1) + · · ·+A1 (z) f ′ +A0 (z) f = 0,

(1.2) f (k) +Ak−1 (z) f (k−1) + · · ·+A1 (z) f ′ +A0 (z) f = F (z) ,

where A0 (z), A1 (z) , . . . , Ak−1 (z) and F (z) 6= 0 are entire functions. It is well
known that all solutions of equations (1.1) and (1.2) are entire functions, and
that if some coefficients of (1.1) are transcendental then (1.1) has at least one
solution with infinite order σ1 (f) = ∞. We refer to [11] for the literature on
the growth of entire solutions of (1.1) and (1.2).

As we know, Bernal [4] firstly introduced the idea of iterated order to express
the first growth of solutions of complex linear differential equations. Since
then many authors achieved many valuable results on iterated order of the
solutions of the complex linear differential equations (1.1) and (1.2) with entire
coefficients of finite order (see [1], [2], [3], [5], [10], [13], [14]).

In 2010, Cao, Xu and Chen [6] proved the following:

Theorem 1.1 ([6]). Assume that A0, A1, . . . , Ak−1 be meromorphic functions,

and let i (A0) = p (0 < p <∞). Assume that either iλ

(
1
A0

)
< p or λp

(
1
A0

)
<

σp (A0) and that either

max {i (Aj) : j = 1, 2, . . . , k − 1} < p

or

max {σp (Aj) : j = 1, 2, . . . , k − 1} ≤ σp (A0) := σ (0 < σ <∞) ,

max {τp (Aj) : σp (Aj) = σp (A0)} < τp (A0) := τ (0 < τ <∞) .

Then every meromorphic solution f (z) 6≡ 0 whose poles are of uniformly
bounded multiplicities, of (1.1) satisfies λp+1 (f − z) = σp+1 (f) = σp (A0) .

Theorem 1.2 ([6]). Assume that A0, A1, . . . , Ak−1 be meromorphic functions.
Suppose that there exist one As (s ∈ {0, 1, . . . , k − 1}) with i (As) = p (0 < p <

∞). Assume that either iλ

(
1
As

)
< p or λp

(
1
As

)
< σp (As) and that either

max {i (Aj) : j 6= s and j = 0, 1, 2, . . . , k − 1} < p

or

max {σp (Aj) : j 6= s and j = 0, 1, 2, . . . , k − 1} ≤ σp (As) := σ (0 < σ <∞) ,

max {τp (Aj) : σp (Aj) = σp (As)} < τp (As) := τ (0 < τ <∞)

and if A1 (z) + zA0 (z) 6≡ 0 and if all solutions of (1.1) are meromorphic whose
poles are of uniformly bounded multiplicities, then any transcendental mero-
morphic solution f with σp (f) > σp (As) satisfies λp (f − z) = σp (f). Further-

more, there exist at least one solution f1 satisfying λp+1 (f1 − z) = σp+1 (f1) =
σp (As).
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Theorem 1.3 ([6]). Assume that A0, A1, . . . , Ak−1and F be meromorphic func-

tions, and let i (A0) = p (0 < p <∞). Assume that either iλ

(
1
A0

)
< p or

λp

(
1
A0

)
< σp (A0) and that either

max {i (Aj) : j = 1, 2, . . . , k − 1} < p

or

max {σp (Aj) : j = 1, 2, . . . , k − 1} ≤ σp (A0) := σ (0 < σ <∞) ,

max {τp (Aj) : σp (Aj) = σp (A0)} < τp (A0) := τ (0 < τ <∞)

if F (z) − (A1 (z) + zA0 (z)) 6≡ 0, then every solution f whose poles are of

uniformly bounded multiplicities, with i (f) = iλ

(
1
f

)
= p + 1 and σp+1 (f) =

λp+1 (f) of (1.2) satisfies λp+1 (f − z) = σp+1 (f) .

In ([8], [9]) Juneja, Kapoor and Bajpai have investigated some properties of
entire functions of [p, q]-order and obtained some results about their growth.
Recently, Liu, Tu and Shi [12] introduced the concept of [p, q]-order for the case
p ≥ q ≥ 1 to investigate the entire solutions of (1.1) and (1.2), and obtained
some results.

Now we defined the [p, q]-order of entire functions, where p, q are positive
integers satisfying p ≥ q ≥ 1 as follows:

Definition 1.3 ([12]). If f (z) is a transcendental entire function, the [p, q]-
order of f (z) is defined by

σ[p,q] (f) = lim
r→∞

logp T (r, f)

logq r
= lim
r→∞

logp+1M (r, f)

logq r
.

It is easy to see that 0 ≤ σ[p,q] (f) ≤ ∞. If f (z) is a polynomial, then
σ[p,q] (f) = 0 for any p ≥ q ≥ 1. By above definition we have that σ[1,1] (f) =
σ1 (f), σ[2,1] (f) = σ2 (f) and σ[p+1,1] (f) = σp+1 (f) .

Remark 1.1. If f (z) is an entire function satisfying 0 < σ[p,q] (f) <∞, then
1. σ[p−n,q] (f) = ∞ (n < p), σ[p,q−n] (f) = 0 (n < q), σ[p+n,q+n] (f) = 1,

(n < p) for n = 1, 2, 3, . . ..
2. If [p′, q′] is any pair of integers satisfying q′ = p′ + q − p and p′ < p, then

σ[p′,q′] (f) = 0, if 0 < σ[p,q] (f) < 1 and σ[p′,q′] (f) =∞, if 1 < σ[p,q] (f) <∞.
3. σ[p′,q′] (f) =∞ for q′ − p′ > q − p and σ[p′,q′] (f) = 0 for q′ − p′ < q − p.

Definition 1.4. A transcendental entire function f (z) is said to have index-
pair [p, q], if 0 < σ[p,q] (f) <∞ and σ[p−1,q−1] (f) is not a nonzero finite number.

Remark 1.2. If σ[p,q] (f) is never greater than 1 and σ[p′,q′] (f) = 1 for some
integer p′ ≥ 1, then the index-pair of f (z) is defined as [m,m], where m =
inf
{
p′ : σ[p′,p′] (f) = 1

}
. If σ[p,q] (f) is never nonzero finite for any positive

integer pair [p, q] and σ[p′′,1] (f) = 0 for some integer p′′ ≥ 1, then the index
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pair of f (z) is defined as [n, 1] where n = inf
{
p′′ : σ[p′′,1] (f) = 0

}
. If σ[p,q] (f)

is always infinite, then the index-pair of f (z) is defined to be [∞,∞].

If f (z) has the index-pair [p, q], then σ[p,q] (f) is called its [p, q]-order. For

example, set f1 (z) = ez, f2 (z) = ee
z

, by Remark 1.2 we have the index-pair
of f1 (z) is [1, 1], and the index-pair of f2 (z) is [2, 1].

Remark 1.3. Let f1 (z) be an entire function of [p, q]-order σ1 and let f2 (z)
be an entire function of [p′, q′]-order σ2 and let p ≤ p′. The following results
about their comparative growth can be easily deducted:

1. If p′ − p > q′ − q, then the growth of f1 is slower than the growth of f2.
2. If p′ − p < q′ − q, then the growth of f1 is faster than the growth of f2.
3. If p′ − p = q′ − q > 0, then the growth of f1 is slower than the growth of

f2 if σ2 ≥ 1 while the growth of f1 is faster than the growth of f2 if σ2 < 1.
4. Let p′ − p = q′ − q = 0, then f1 and f2 are of the same index-pair [p, q] .

If σ1 > σ2, then f1 grows faster than f2 , and if σ1 < σ2, then f1 grows slow
than f2. If σ1 = σ2, Definition 1.3 does not give any precise estimate about the
relative growth of f1 and f2.

Definition 1.5. The [p, q]-type of an entire function f (z) of [p, q]-order σ
(0 < σ <∞) is defined by

τ[p,q] (f) = lim
r→∞

logp−1 T (r, f)(
logq−1 r

)σ = lim
r→∞

logpM (r, f)(
logq−1 r

)σ .
Definition 1.6. The [p, q]-exponent of convergence of the sequence of zeros of
f (z) is defined by

λ[p,q] (f) = lim
r→∞

logpN
(
r, 1f

)
logq r

.

Definition 1.7. The [p, q]-exponent of convergence of the sequence of distinct
zeros of f (z) is defined by

λ[p,q] (f) = lim
r→∞

logpN
(
r, 1f

)
logq r

.

By using the notion of [p, q]-order of entire functions, Liu, Tu and Shi [12]
prove the following theorem:

Theorem 1.4 (see [12]). Let F (z) 6≡ 0, Aj (z) (j = 0, 1, . . . , k − 1) be en-
tire functions satisfying max

{
σ[p,q] (Aj) : j = 0, 1, 2, . . . , k − 1

}
< σ[p+1,q] (F ),

then we have that
1. σ[p+1,q] (f) = σ[p+1,q] (F ) holds for all solutions of (1.2) .
2. λ[p+1,q] (f) = σ[p+1,q] (f) = σ[p+1,q] (F ) holds for all solutions of (1.2)

with at most one exceptional solution f0 satisfying λ[p+1,q] (f0) < σ[p+1,q] (F ) .

The main purpose of this paper is to consider the growth of entire solutions
of equation (1.1) and (1.2) with entire coefficients of finite [p, q]-order in the
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complex plane. Some of results improve and extend earlier results of T. B. Cao,
J. F. Xu, Z. X. Chen [6]; J. Liu, J. Tu, L. Z. Shi [12].

2. Main results

In this section we state the main results of the paper.

Theorem 2.1. Let A0, A1, . . . , Ak−1 be entire functions satisfying

max
{
σ[p,q] (Aj) : j = 1, 2, . . . , k − 1

}
≤ σ[p,q] (Ao)

and

max
{
τ[p,q] (Aj) : σ[p,q] (Aj) = σ[p,q] (Ao)

}
< τ[p,q] (A0) .

If A1 (z)+zA0 (z) 6≡ 0, then for every entire solutions f (z) 6≡ 0 of (1.1) satisfies

λ[p+1,q] (f − z) = σ[p+1,q] (f) = σ[p,q] (A0) .

For p > q ≥ 1 we have the following example:

Example 2.1. f (z) = ee
z

solves the differential equation

f ′′ − f ′ − e2zf = 0,

where A1 (z) = −1, A0 (z) = −e2z are entire with σ[p,q] (A1) = 0, σ[p,q] (A0) =
0, and τ[p,q] (A1) = 0, τ[p,q] (A0) =∞.

Clearly, σ[p,q] (A1) ≤ σ[p,q] (A0) and τ[p,q] (A1) < τ[p,q] (A0) .
Also, A1 (z) + zA0 (z) 6≡ 0.
Hence

λ[p+1,q] (f − z) = 0 = σ[p+1,q] (f) = σ[p,q] (A0) .

Theorem 2.2. Let A0, A1, . . . , Ak−1 be entire functions satisfying

max
{
σ[p,q] (Aj) : j 6= s and j = 0, 1, 2, . . . , k − 1

}
< σ[p,q] (As) .

If A1 (z) + zA0 (z) 6≡ 0, then for every entire solutions f (z) of (1.1) with
σ[p,q] (f) > σ[p,q] (As) satisfies

λ[p,q] (f − z) = σ[p,q] (f) .

Furthermore, there exist at least one solution f1 satisfying

λ[p+1,q] (f1 − z) = σ[p+1,q] (f1) = σ[p,q] (As) .

Theorem 2.3. Let A0, A1, . . . , Ak−1 and F 6≡ 0 be entire functions in the
plane satisfying

max
{
σ[p,q] (Aj) : j = 1, 2, . . . , k − 1

}
< σ[p,q] (A0) .

If F (z)−(A1(z)+zA0(z)) 6≡ 0, then for every entire solutions f(z) of (1.2) with
σ[p+1,q] (f) = λ[p+1,q] (f) satisfies

λ[p+1,q] (f − z) = σ[p+1,q] (f) .
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Example 2.2. For the differential equation f ′′−f ′−
(
e2z − 1

)
f = ee

z

, we can

easily see that this equation has a solution f (z) = ee
z

. The functions A1 (z) =
−1, A0 (z) = −

(
e2z − 1

)
, F (z) = ee

z

are entire functions and σ[1,1] (A1) = 0 <
1 = σ[1,1] (A0). Clearly F (z)− (A1 (z) + zA0 (z)) 6≡ 0, and σ[2,1] (f) = 1 6= 0 =

λ[2,1] (f). Thus we get

λ[2,1] (f − z) = 0 6= 1 = σ[2,1] (f) .

Example 2.3. The differential equation f ′′ + ezf = ez + e2z has a solution
f (z) = ez,where σ[p,p] (A0) = 1, σ[p,q] (A1) = 0 and F − (A1 + zA0) = ez +

e2z − zez 6≡ 0.
Also λ[p+1,q] (f) = 0 = σ[p+1,q] (f) . Thus,

λ[p+1,q] (f − z) = 0 = σ[p+1,q] (f) .

Theorem 2.4. Let A0, A1, . . . , Ak−1 and F 6= 0 be entire functions satisfying

max
{
σ[p,q] (Aj) : j 6= s and j = 0, 1, 2, . . . , k − 1

}
< σ[p,q] (As) .

Suppose that g0 is a solution of (1.2) and (f1, f2, . . . , fk) is a solution base of
the corresponding homogeneous equation (1.1) of (1.2), then

1. If σ[p+1,q] (F ) < σ[p,q] (As), then there exist a fj (j ∈ {1, 2, . . . , k}) say
f1 such that the solutions in the solution subspace G = {fc = cf1 + g0 : c ∈ C}
satisfy

λ[p+1,q] (fc) = λ[p+1,q] (fc) = σ[p+1,q] (fc) = σ[p,q] (As)

with at most one exception.
2. If σ[p+1,q] (F ) > σ[p,q] (As), then for all solutions of (1.2) we have

σ[p+1,q] (f) = σ[p+1,q] (F ) .

Let f (z) = g (z)− z, then the zeros of g (z) is just the fixed points of f (z).
So obviously

λ[p+1,q] (f − z) = λ[p+1,q] (g)

and

σ[p+1,q] (f) = σ[p+1,q] (g) .

Example 2.4. Consider the differential equation

f ′′ − 2zf ′ + ezf = 4z2ee
z2

e2z
2

+ 2ee
z2

ez
2

+ ee
z2

ez,

we can easily see that this equation has a solution f (z) = ee
z2

. The functions

A1 = −2z, A0 = ez and F (z) = 4z2ee
z2

e2z
2

+ 2ee
z2

ez
2

+ ee
z2

ez satisfies

σ[1,1] (A1) = 0 < σ[1,1] (A0) = 1,

and

σ[2,1] (F ) = 2 > σ[p,q] (A0) = 1.

Thus we get

σ[2,1] (F ) = 2 = σ[2,1] (f) .
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3. Lemmas

In this section we present some lemmas which will be needed in sequel.

Lemma 3.1 ([12]). Let f (z) be an entire function of [p, q]-order. Then

σ[p,q] (f) = σ[p,q] (f ′) .

Lemma 3.2 ([12]). Let F (z) 6= 0, Aj (z) (j = 0, 1, . . . , k − 1) be entire func-
tions, let f (z) be a solution of (1.2) satisfying max

{
σ[p,q] (Aj) , σ[p,q] (F )

}
<

σ[p,q] (f) , then we have λ[p,q] (f) = λ[p,q] (f) = σ[p,q] (f) .

Lemma 3.3 (see [12]). Let Aj (z) (j = 0, 1, . . . , k − 1) be entire functions sat-
isfying max

{
σ[p,q] (Aj) : j 6= s and j = 0, 1, 2, . . . , k − 1

}
< σ[p,q] (As) < ∞,

then every solution f (z) of (1.1) satisfies σ[p+1,q] (f) ≤ σ[p,q] (As). Further-
more, at least one solution of (1.1) satisfies σ[p+1,q] (f) = σ[p,q] (As).

Lemma 3.4 (see [12]). Let Aj (z) (j = 0, 1, . . . , k − 1) be entire functions sat-
isfying

max
{
σ[p,q] (Aj) : j = 1, 2, . . . , k − 1

}
≤ σ[p,q] (A0) <∞

and

max
{
τ[p,q] (Aj) : σ[p,q] (Aj) = σ[p,q] (A0) > 0

}
< τ[p,q] (A0) .

Then every nontrivial solution f (z) of (1.1) satisfies σ[p+1,q] (f) = σ[p,q] (A0).

Lemma 3.5 (see [12]). Let F (z) 6≡ 0, Aj (z) (j = 0, 1, . . . , k − 1) be en-
tire functions satisfying max

{
σ[p,q] (Aj) , σ[p+1,q] (F ) : j = 1, 2, . . . , k − 1

}
<

σ[p,q] (A0). Then every solution f (z) of (1.2) satisfies

λ[p+1,q] (f) = λ[p+1,q] (f) = σ[p+1,q] (f) = σ[p,q] (A0)

with at most one exceptional solution f0 satisfying σ[p+1,q] (f0) < σ[p,q] (A0) .

4. Proofs of main theorems

Proof of Theorem 2.1. Let f (z) 6≡ 0 be an entire solution of (1.1) . Set g (z) =
f (z)− z.

Obviously

λ[p+1,q] (f − z) = λ[p+1,q] (g)

and

σ[p+1,q] (f) = σ[p+1,q] (g) .

Then from equation (1.1)

g(k) +Ak−1 (z) g(k−1) + · · ·+A1 (z) g′ +A0 (z) g = − [A1 (z) + zA0 (z)] .

By Lemma 3.4, we have σ[p+1,q] (f) = σ[p,q] (A0) .
Since A1 (z) + zA0 (z) 6≡ 0 is an entire function, therefore

max
{
σ[p+1,q] (Aj) , σ[p+1,q] (−A1 (z)− zA0 (z)) : j = 0, 1, 2, . . . , k − 1

}
< σ[p+1,q] (f) = σ[p+1,q] (g) .
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With the help of Lemma 3.2, we obtain

λ[p+1,q] (g) = σ[p+1,q] (g) ,

i.e., λ[p+1,q] (f − z) = σ[p+1,q] (f) .

Hence

λ[p+1,q] (f − z) = σ[p+1,q] (f) = σ[p,q] (A0) . �

Proof of Theorem 2.2. Let f (z) be an entire function of (1.1). Set g (z) =
f (z)− z. Obviously

λ[p+1,q] (f − z) = λ[p+1,q] (g)

and

σ[p+1,q] (f) = σ[p+1,q] (g) .

Then equation (1.1) becomes

g(k) +Ak−1 (z) g(k−1) + · · ·+A1 (z) g′ +A0 (z) g = − [A1 (z) + zA0 (z)] .

From Lemma 3.3, we have

σ[p+1,q] (f) ≤ σ[p,q] (As) .

If σ[p,q] (f) > σ[p,q] (As) and A1 (z) + zA0 (z) 6≡ 0 is an entire function, then

max
{
σ[p,q] (Aj) , σ[p,q] (−A1 (z)− zA0 (z)) : j = 0, 1, 2, . . . , k − 1

}
≤ σ[p,q] (As) < σ[p,q] (f) .

By help of Lemma 3.2, we get

λ[p,q] (g) = σ[p,q] (g) ,

i.e., λ[p,q] (f − z) = σ[p,q] (f) .

Again from Lemma 3.3, there exists a solution f1 of (1.1) such that σ[p+1,q] (f1)
= σ[p,q] (As), then we have

max
{
σ[p+1,q] (Aj) , σ[p+1,q] (−A1 (z)− zA0 (z)) : j = 0, 1, 2, . . . , k − 1

}
< σ[p+1,q] (f1) .

Thus

λ[p+1,q] (g1) = σ[p+1,q] (g1) where g1 (z) = f1 (z)− z,

i.e.,

λ[p+1,q] (f1 − z) = σ[p+1,q] (f1) .

Hence

λ[p+1,q] (f1 − z) = σ[p+1,q] (f1) = σ[p,q] (As) . �
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Proof of Theorem 2.3. Let f(z) be an entire solution of (1.2), with σ[p+1,q] (f)

= λ[p+1,q] (f) .
Set g (z) = f (z)− z.
Then from the equation (1.2) we have

g(k) +Ak−1 (z) g(k−1) + · · ·+A1 (z) g′ +A0 (z) g = F (z)− (A1 (z) + zA0 (z)) .

By Lemma 3.5, there exists some entire solution f (z) of (1.2) satisfying
σ[p+1,q] (f) = λ[p+1,q] (f), therefore

max
{
σ[p+1,q] (Aj) , σ[p+1,q](F (z)−A1(z)− zA0(z)) : j = 0, 1, 2, . . . , k − 1

}
< σ[p+1,q] (f) .

If F (z)−A1 (z)− zA0 (z) 6≡ 0 is an entire function, then by Lemma 3.2, we
obtain

λ[p+1,q] (g) = σ[p+1,q] (g) .

Hence

λ[p+1,q] (f − z) = σ[p+1,q] (f) . �

Proof of Theorem 2.4. 1. Let f (z) be a solution of (1.2). By the elementary
theory of differential equations [15], all solutions of (1.2) are entire functions
and have the form

f = f∗ + C1f1 + C2f2 + · · ·+ Ckfk,

where C1, C2, . . . , Ck are complex constants, and (f1, f2, . . . , fk) is a solution
base of (1.1), f∗ is a solution of (1.2) and has the form

(4.1) f∗ = D1f1 +D2f2 + · · ·+Dkfk,

where D1, D2, . . . , Dk are certain entire functions satisfying

(4.2) D′j = F ·Gj (f1, f2, . . . , fk) ·W (f1, f2, . . . , fk)
−1

(j = 1, 2, . . . , k) ,

where Gj (f1, f2, . . . , fk) are differential polynomials in f1, f2, . . . , fk and their
derivative with constant coefficients, and W (f1, f2, . . . , fk) is the Wronskian of
f1, f2, . . . , fk.

From Lemma 3.3 we have

σ[p+1,q] (fj) ≤ σ[p,q] (As) (j = 1, 2, . . . , k)

and there is one fj (j ∈ {1, 2, . . . , k}), say f1 satisfies σ[p+1,q] (f1) = σ[p,q] (As) .
Using Lemma 3.1, (4.1) and (4.2) we obtain

(4.3)
σ[p+1,q] (f) ≤ max

{
σ[p+1,q] (fj) , σ[p+1,q] (F ) : j = 1, 2, . . . , k

}
= σ[p,q] (As) .

Thus, all solutions fc in G = {fc = cf1 + g0 : c ∈ C}, satisfy

σ[p+1,q] (fc) = σ[p,q] (As)

with at most one exception.
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Again, we have

max
{
σ[p+1,q] (Aj) , σ[p+1,q] (F ) : j = 0, 1, 2, . . . , k − 1

}
< σ[p+1,q] (fc) .

So, by using Lemma 3.2, we obtain

λ[p+1,q] (fc) = λ[p+1,q] (fc) = σ[p+1,q] (fc) .

Hence

λ[p+1,q] (fc) = λ[p+1,q] (fc) = σ[p+1,q] (fc) = σ[p,q] (As) ,

with at most one exception.
2. From the equation (4.3), we have

σ[p+1,q] (f) ≤ max
{
σ[p+1,q] (fj) , σ[p+1,q] (F ) : j = 1, 2, . . . , k

}
≤ max

{
σ[p+1,q] (Aj) , σ[p+1,q] (F ) : j = 0, 1, 2, . . . , k − 1

}
= σ[p+1,q] (F ) .

Thus

(4.4) σ[p+1,q] (f) ≤ σ[p+1,q] (F ) .

On the other hand, by a simple order comparison from (1.2) we have

σ[p+1,q] (F ) ≤ max
{
σ[p+1,q] (Aj) , σ[p+1,q] (f) : j = 1, 2, . . . , k − 1

}
.

But σ[p+1,q] (Aj) < σ[p+1,q] (F ) , so we have

(4.5) σ[p+1,q] (F ) ≤ σ[p+1,q] (f) .

From (4.4) and (4.5) we obtain

σ[p+1,q] (f) = σ[p+1,q] (F ) .
�

5. Future aspects

It should be noted that there are still much work to be done and there is a
scope of extending the present work in future. For instance, the case in which
the coefficients of differential equations are meromorphic functions of [p, q]-
order and the case in which the coefficients of differential equations of analytic
functions of [p, q]-order in the unit disc could be considered.
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