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UNIQUENESS OF TWO DIFFERENTIAL POLYNOMIALS OF

A MEROMORPHIC FUNCTION SHARING A SET

Molla Basir Ahamed

Abstract. In this paper, we are mainly devoted to find out the general

meromorphic solution of some specific type of differential equation. We
have also answered an open question posed by Banerjee-Chakraborty [4]

by extending their results in a large extent. We have provided an example
showing that the conclusion of the results of Zhang-Yang [16] is not gen-

eral true. Some examples have been exhibited to show that certain claims

are true in our main result. Finally some questions have been posed for
the future research in this direction.

1. Introduction

In this paper, by a meromorphic function f , we mean a meromorphic func-
tion in the whole complex plane. We use the standard notation of Nevanlinna
theory [5]. Let f and g be two non constant meromorphic functions in the
complex plane C. If for some a ∈ C ∪ {∞}, f − a and g − a have same set
of zeros with the same multiplicities, we say that f and g share the value a
CM (counting multiplicities) and if we do not consider the multiplicities, then
f and g are said to share the value a IM (ignoring multiplicities).

When we use a =∞, the zeros of f − a means the poles of f .
In 1977, Rubel-Yang [11] first showed that Nevanlinna’s Five Point Unique-

ness Theorem can radically be improved if one considers the sharing of an entire
function with its derivative. here we recall the result.

Theorem A ([11]). If f is a non-constant entire function in the finite complex
plane and if f and f ′ share two distinct finite values CM, then f ≡ f ′.

The following examples show that in Theorem A the number ‘two’ is the
best possible.

Example 1.1 ([11]). Let

f(z) = ee
z

∫ z

0

e−e
t

(1− et)dt.
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It is clear that f ′ − 1 = ez(f − 1). So f and f ′ share 1 CM but f 6≡ f ′.

Example 1.2. Let f(z) = e−z + 4. It is clear that f and f ′ share the value 2
CM but f 6≡ f ′.

The next example shows that the same thing happens if ‘entire’ is replaced
by ‘non-entire meromorphic’ function.

Example 1.3. Let f(z) = 2Ae2z
e2z−B . It is clear that f and f ′ share A IM but

f 6≡ f ′.

In 1979, Mues-Steinmetz [10] further improved Theorem A as follows.

Theorem B ([10]). Let f be a non-constant entire function. If f and f ′ share
two distinct values a, b IM, then f ≡ f ′.

The following example shows that in Theorem B, one can not replace simply
the word ‘entire’ by ‘meromorphic’.

Example 1.4 ([10]). Let f(z) =
(

1
2 −

√
5i
2 tan

(√
5i
4 z
))2

. Clearly f and f ′

share 0, 1 IM, but note that f 6≡ f ′.

We next recall the following well known definition of set sharing.
Let S be a set of complex numbers and Ef (S) =

⋃
a∈S{z : f(z) = a},

where each zero is counted according to its multiplicity. If we do not count the
multiplicity, then the set

⋃
a∈S{z : f(z) = a} is denoted by Ef (S).

If Ef (S) = Eg(S) we say that f and g share the set S CM. On the other

hand, if Ef (S) = Eg(S), we say that f and g share the set S IM. Evidently, if
S contains only one element, then it coincides with the usual definition of CM
(respectively, IM) sharing of values.

One can see from the following example that the result of Rubel-Yang or
Mues-Steinmetzis are not in general true when we consider the sharing of a set
of two elements instead of values.

Example 1.5. Let S =
{

2a
5 ,

3a
5

}
, where a(6= 0) be any complex number. Let

f(z) = e−z + a, then Ef (S) = Ef ′(S) but f 6≡ f ′.

So, for the uniqueness of an entire function and its derivative when sharing
a set S CM , the cardinality of the range set should be at least three.

Example 1.6. Suppose S = {−2i, 0, 2i} and f(z) = e2iz−1
eiz . Then f and f ′

share S IM but f 6≡ f ′.

Note 1.1. In Example 1.6, one may consider k-th derivative of f instead of
first, when k is an odd positive integer.

Remark 1.1. So from Note 1.1, it is clear that for the uniqueness of an en-
tire function f and its higher order derivative f (k) sharing a set S IM , the
cardinality of a set S should be at least four.

To continue our discussions, we now define a small function as follows:



UNIQUENESS OF TWO DIFFERENTIAL POLYNOMIALS 1183

Definition 1.1. Let f be a non-constant meromorphic function. A function
a ≡ a(z)(6≡ 0,∞) is said to be a small function of f if T (r, a) = S(r, f).

In 2008, Yang-Zhang [12] obtained the following result.

Theorem C ([12]). Let f be a non-constant meromorphic function and q ≥ 12
be an integer. If fq and (fq)′ share 1 CM , then fq ≡ (fq)′, and assumes the
form

f(z) = ce
z
q ,

where c is a non-zero constant.

In 2009, Zhang-Yang [16] further improved Theorem C to a large extent by
obtaining the following result.

Theorem D ([16]). Let f be a non-constant meromorphic function, q, k be
positive integers and a ≡ a(z) be a small function of f such that a(z) 6≡ 0,∞.
If fq − a and (fq)(k) − a share the value 0 CM and q > k + 1 +

√
k + 1, then

fq ≡ (fq)(k) and f assumes the form

f(z) = ce
λ
q z,

where c is a non-zero constant and λk = 1.

Theorem E ([16]). Let f be a non-constant meromorphic function, q, k be
positive integers and a ≡ a(z) be a small function of f such that a(z) 6≡ 0,∞.
If fq − a and (fq)(k)− a share the value 0 IM and q > 2k+ 3 +

√
2k + 3, then

fq ≡ (fq)(k) and f assumes the form

f(z) = ce
λ
q z,

where c is a non-zero constant and λk = 1.

Remark 1.2. In the conclusion of Theorems D and E, for the case of higher
order derivative k ≥ 2, one may observe that, it is not always true the fact that
if fq ≡ (fq)(k), then f assumes the form

f(z) = ce
λ
q z

with c ∈ C∗ and λk = 1.

Following is a supportive example of the above observations.

Example 1.7. We choose f in such a way that f13 = c1e
z + c2e

ωz + c3e
ω2z,

where ω is a non-real cube root of unity and ci ∈ C∗. Let q = 13, k = 3, then it
is clear that q > k+1+

√
k + 1 and q > 2k+3+

√
2k + 3 and also fq ≡ (fq)(k)

but

f(z) 6= ce
λ
q z

for a c ∈ C∗ and λk = 1.

To continue the discussion we now recall the following definitions.
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Definition 1.2 ([7]). Let p be a positive integer and a ∈ C ∪ {∞}.
(i) N(r, a; f |≥ p) (N(r, a; f |≥ p)) denotes the counting function (reduced

counting function) of those a-points of f whose multiplicities are not
less than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p)) denotes the counting function (reduced
counting function) of those a-points of f whose multiplicities are not
greater than p.

Definition 1.3 ([13]). For a ∈ C∪ {∞} and a positive integer p we denote by
Np(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + · · ·+N(r, a; f |≥ p). It is clear that

N1(r, a; f) = N(r, a; f).

From the above results, we see that the research about the uniqueness of a
meromorphic function and its derivative sharing a ‘value’ or ‘small function’
has a long history. The best result obtained so far is for a function and its first
derivative sharing a set with three elements. We also see that generally in the
conclusion of the above results discussed so far, different possible forms of the
function f have been exhibited. To serve the purpose researchers sometimes
resorted to additional suppositions. But no attempt have so far been made to
find the uniqueness of an entire or meromorphic function with its higher order
derivatives sharing a set.

We now recall the following uniqueness polynomial introduced by Lin-Yi [8]

(1.1) P (w) = awn − n(n− 1)w2 + 2n(n− 2)bw − (n− 1)(n− 2)b2,

where n ≥ 3 is an integer and a, b ∈ C∗ satisfying abn−2 6= 2. It is easy to
verify that the polynomial P (w) has only simple zeros.

We now recall the notion of weighted sharing which is a scaling between CM
or IM sharing of values or sets appeared first in the literature in 2001 [6].

Definition 1.4 ([6]). Let k be a nonnegative integer or infinity. For a ∈
C ∪ {∞} we denote by Ef (a, k) the set of all a-points of f , where an a-point
of multiplicity m is counted m times if m ≤ k and k + 1 times if m > k. If
Ef (a, k) = Eg(a, k), we say that f , g share the value a with weight k.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively.

Definition 1.5 ([6]). Let S be a set of distinct elements of C∪ {∞} and k be
a nonnegative integer or ∞. We denote by Ef (S, k) the set

⋃
a∈S Ek(a; f). If

Ef (S, k) = Eg(S, k), then we say f , g share the set S with weight k.

Very recently, in this direction, with the help of weighted sharing of sets
Banerjee-Chakraborty [4] considered a homogeneous differential polynomial

L(f) = a0

(
f (k)

)l
+ a1

(
f (k−1)

)l
+ · · ·+ ak−1 (f ′)

l
,
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where l, k ∈ N, ai ∈ C and obtained the following result.

Theorem F ([4]). Let m(≥ 1), n(≥ 1) be positive integers and f be a non-
constant meromorphic function. Suppose S = {w : P (w) = 0} and Efm(S, p) =
EL(f)(S, p). If one of the following conditions holds:

(1) 2 ≤ p <∞ and n > 6 + 6(µ+1)
λ−2µ , or

(2) p = 1 and n > 13
2 + 7(µ+1)

λ−2µ , or

(3) p = 0 and n > 6 + 3µ+ 6(µ+1)2

λ−2µ ,

then fm ≡ L(f), where λ = min{m(n − 2) − 1, l(k + 1)(n − 2) − 1} and

µ = min
{

1
p , 1
}

.

Note 1.2. One may observe that one can not find the lower bound n for the
case p = 0 in Theorem F since the number µ is undefined in the case (3) when
p = 0.

So a natural question arises as follows:

Question 1.1. Is it possible in anyway, to find a corresponding result of The-
orem F for the case p = 0 by removing the difficulty mentioned above?

In [4], Banerjee-Chakrabarty asked an open question as follows:

Question 1.2. Can the conclusion of Theorem F remain valid if any non-
homogeneous differential polynomial generated by f is considered?

Therefore to extend all the above theorems in a large extent and also to
answer the above questions, we are now at a position to define differential
polynomial as follows.

Definition 1.6 ([3]). Let n0j , n1j , . . . , nkj be non-negative integers. Also let
g = fq.
• The expression Mj [g] = (g)n0j (g′)n1j · · · (g(k))nkj is called a differential mono-

mial generated by g of degree d(Mj) =
∑k
i=0 nij and weight ΓMj =

∑k
i=0(1 +

i)nij .

• The sum P [g] =
∑t
j=1 bjMj [g] is called a differential polynomial generated

by g of degree d(P ) = max{d(Mj) : 1 ≤ j ≤ t} and weight ΓP = max{ΓMj
:

1 ≤ j ≤ t}, where T (r, bj) = S(r, g) for j = 1, 2, . . . , t.
• The numbers d(P ) = min{d(Mj) : 1 ≤ j ≤ t} and k the highest order of
the derivative of g in P [g] are called respectively the lower degree and order of
P [g].
• P [g] is called homogeneous if d(P ) = d(P ).
• P [g] is called a linear differential polynomial generated by g if d(P ) = 1.
Otherwise P [g] is called non-linear differential polynomial. We denote by Q =
max{ΓMj − d(Mj) : 1 ≤ j ≤ t}.

Next we have the following observation.
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Note 1.3. For a non-constant meromorphic function f , let us suppose that
f ≡ f (k). It is clear that f can not have any pole. Again since no non-
constant polynomial satisfies the relation, so it is very natural that f must
be a transcendental entire function. So one must have the general solution of
f ≡ f (k) as follows:

(1) When N(r, 0; f) 6= S(r, f), then

f(z) = c0 exp(z) + c1 exp(θz) + c2 exp(θ2z) + · · ·+ ck−1 exp(θk−1z),

(2) When N(r, 0; f) = S(r, f), then

f(z) = c exp(θz),

where θ = cos
(

2π
k

)
+ i sin

(
2π
k

)
and c(6= 0), c

i−1
∈ C, not all zero, for i ∈

{1, 2, . . . , k}.

So observing Note 1.3, one natural question arises as follows:

Question 1.3. Can we extend f (k) up to a general differential monomial M [f ]
to get a certain form of the function which satisfies the relation f ≡M [f ]?

The answer of Question 1.3 is not true in general. Suppose M [f ] = f (k)f (r)

or
(
f (k)

)nk (
f (r)

)nr
etc., where k, r and nk, nr all are positive integers with

k > r. We see that the form of the function in Note 1.3 does not satisfy the
relation f ≡M [f ].

Since our main motivation is to extend f (k) up to a general differential
monomial M [f ], and also to find a non-constant meromorphic solution of the
relation f ≡M [f ], so the worth noticing fact here is that, we need some power
in the first setting of the relation. If so, then the question arises: ‘does it really
help us to get fp ≡ M [f ] for the function in Note 1.3? ’ The answer is NO in
general. We explain the fact in the following.

(i) Suppose that f(z) = c1 exp(z)+c2 exp(−z) andM [f ] =
(
f (k)

)nk (
f (r)

)nr
,

where p = nk + nr, k and r are even positive integers. In this case, one can
easily obtained fp ≡M [f ].

(ii) But, if f(z) = c1 exp(z) + c2 exp(−z) and M [f ] =
(
f (k)

)nk (
f (r)

)nr
,

where one of k and r is even and other is odd positive integer. Then fp 6≡M [f ]
for all positive integer p.

Thus, we have the following observation.

Note 1.4. For a more general setting fdM ≡M [f ], where

M [f ] = (f)
n0 (f ′)

n1 (f ′′)
n2 · · ·

(
f (k)

)nk
,

we see that f(z) = c exp(λz), λQM = 1, is a certain solution of it, where

QM = ΓM − dM , ΓM =
∑k
i=0(i+ 1)ni and dM =

∑k
i=0 ni.

The above observations motivate oneself to construct a new setting in the
place of f or fdM which when shares a set S with its differential polynomial
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P [f ] to get f(z) = c exp(λz) as a solution of the identical relation between
them.

So the following question is inevitable.

Question 1.4. What setting one should assume in the place of f or in fdM

to get f(z) = c exp(λz) as a certain solution of the identical relation of that
setting with P [f ]?

To this end, next we define

=(z) =

t∑
j=1

bjz
dMj = b1z

dM1 + b2z
dM2 + · · ·+ btz

dMt ,

where bj(j = 1, 2, . . . , t) are all constants.
Since the natural extension of the derivatives of a meromorphic function is

differential monomials and hence differential polynomials generated by f , so for
the improvements as well as extensions in this direction further, the following
questions are inevitable.

Question 1.5. Is it possible that power of a meromorphic function when shar-
ing a set together with its k-th derivative or differential monomial or even its
differential polynomial becomes identical?

If the answer of the above question is affirmative, then another natural
question arises as follows.

Question 1.6. Is it possible in anyway to get a solution or sometimes a specific
form of the function of the identical relation?

Answering all the above mentioned questions affirmatively is the main mo-
tivation of writing this paper.

2. Main results

Following theorems are the main results of this paper which answer all the
above questions and the query mentioned in Note 1.4 affirmatively.

Theorem 2.1. Let n, k, q (≥ k+1) ∈ N and f be a non-constant meromorphic
function. Suppose that S = {w : P (w) = 0}. If E=(fq)(S, p) = EP [fq ](S, p)
and one of the following conditions holds:

(1) 2 ≤ p <∞ and n > max

{
2d(P ), 5 + 6(2p2+pγm−2)

(pδ−2)(pγm−2)−p(2+p)

}
,

(2) p = 1 and n > max

{
2d(P ), 11

2 + γm
(δ−2)(γm−2)−3

}
,

(3) p = 0 and n > max

{
2d(P ), 11 + 12γm

(δ−2)(γm−2)−3

}
,

then

=(fq) ≡ P [fq],
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where δ = (n− 2)d(P )− 1 and γm = min1≤j≤t
{

2dMj
− ΓMj

}
n− 1.

Furthermore, we see that the function f of the form

f(z) = c exp

(
λ

q
z

)
,

where c is a non-zero constant with λΓQj = 1 for all j = 1, 2, . . . , t, is a certain
solution of =(fq) ≡ P [fq].

Theorem 2.2. Let n, k, q (≥ k + 1) ∈ N and f be a non-constant entire
function. Suppose that S = {w : P (w) = 0} and E=(fq)(S, p) = EP [fq ](S, p).
If one of the following conditions holds:

(1) 2 ≤ p <∞ and n > max
{

2d(P ), 5
}
,

(2) p = 1 and n > max
{

2d(P ), 11
2

}
,

(3) p = 0 and n > max
{

2d(P ), 11
}
,

then conclusions of Theorem 2.1 hold.

Remark 2.1. Theorem 1.1 directly improves Theorem F by extending from ho-
mogeneous differential polynomial to non-homogeneous differential polynomial
as well as by reducing the lower bound of the cardinality of the set.

Next in particular, if we consider =(fq) = fq and P [fq] = (fq)(k), then
clearly d(P ) = 1 and ΓP = k. So, we have the following corollaries.

Corollary 2.1. Let n, k, q (≥ k + 1) ∈ N and f be a non-constant entire
function such that N(r, 0; f) = S(r, f). Suppose that S = {w : P (w) = 0}, and
Efq (S, p) = E(fq)(k)(S, p). If one of the following conditions holds:

(1) 2 ≤ p <∞ and n > 2,
(2) p = 1 and n > 2,
(3) p = 0 and n > 4,

then fq ≡ (fq)(k).
Then f assume the form

f(z) = c exp

(
λ

q
z

)
,

where c is a non-zero constant and λk = 1.

Remark 2.2. From Corollary 2.1, we see that for the uniqueness of f and its
k-th derivative sharing (S, 1) when N(r, 0; f) = S(r, f), the cardinality of the
set S is 3.

Remark 2.3. We see from Corollary 2.1, for the uniqueness of f and its k-th
derivative sharing (S, 0) when N(r, 0; f) = S(r, f), the cardinality of the set S
is 5.

Remark 2.4. From Theorems 2.1 and 2.2, we observe that there exists a set
S with 6 elements such that Efq (S, 3) = E(fq)(k)(S, 3) with q (≥ k + 1), then

fq ≡ (fq)(k) for a non constant meromorphic function f .
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The following two examples show that for a non-constant entire function the
set S in Theorem 2.1 can not be replaced by an arbitrary set containing six
distinct elements.

Example 2.1. Let S =
{
−6,−6ω2, 0, 2ω, 4ω, 6ω

}
, where ω is the non-real

cubic root of unity. Let k be an odd positive integer. Choosing f(z) =

(e−z + 6ω)
1
q , where q ≥ k + 1. It is easy to verify that =(fq) = fq and

P [fq] = (fq)(k) − (fq)′′′(fq)′ + ((fq)′′)2 share (S,∞), but =(fq) 6≡ P [fq].

Example 2.2. Let k be a positive integer and θ be a root of the equation

zk + 1 = 0. Let f(z) =
(
eθz + a

) 1
q , where q ≥ k + 1 and a is a non-zero

complex number. Let S =
{
a
6 ,

5a
6 ,

3a
7 ,

4a
7 ,

2a
9 ,

7a
9

}
. Therefore it is easy to verify

that =(fq) = fq and P [fq] = (fq)(k) share (S,∞), but =(fq) 6≡ P [fq].

The next example shows that for a non-constant entire function the set S in
Corollary 2.1 can not be replaced by an arbitrary set containing three distinct
elements.

Example 2.3. For a non-zero constant a, let S =
{
a, aω, aω2

}
, where ω is

the non-real cube root of unity. Choosing f(z) = exp
(

1
qω

2
k z
)

, it is easy to

verify that N(r, 0; f) = S(r, f). Note that fq and (fq)(k) share (S,∞), but
fq 6≡ (fq)(k).

3. Some lemmas

We define R(w) = awn

n(n−1)(w−α1)(w−α2) , where αi, (i = 1, 2) are the distinct

roots of the equation

n(n− 1)w2 − 2n(n− 2)bw + (n− 1)(n− 2)b2 = 0.

Then

R(w)− 1 =
P (w)

n(n− 1)(w − α1)(w − α2)
.

Let F = R(=(fq)) and G = R (P [fq]), where q ≥ k + 1 and f(z) is a non-
constant meromorphic function and associated with F and G, we define

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G − 1

)
.

Lemma 3.1 ([14]). Let f be a non-constant meromorphic function and Q(f) =
amf

q + am−1f
m−1 + · · ·+ a0, where a0, a1, . . . , am are constants with am 6= 0.

Then
T (r,Q(f)) = m T (r, f) + S(r, f).

Lemma 3.2 ([15]). Let h be a non-constant meromorphic function, and let aj
be distinct finite complex numbers such that aj 6= 0 for j = 1, 2, . . . , q. Then

q∑
j=1

(
N

(
r,

1

h− aj

)
−N

(
r,

1

h− aj

))
≤ N (r, 0;h) +N(r,∞;h) + S(r, h).
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Lemma 3.3 ([13]). Let f be a non-constant meromorphic function. Then

N
(
r, 0; f (k)

)
≤ N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 3.4. Let F and G share (1, p) where F and G defined as earlier. Then

(1) NL(r, 1;F) ≤
{
N(r, 0;=(fq)) +N(r,∞; f)

}
+ S(r, f) for p = 0.

(2) NL(r, 1;F) ≤ 1
p

{
N(r, 0;=(fq)) +N(r,∞; f)

}
+ S(r, f) for p ≥ 1.

(3) NL(r, 1;G) ≤
{
N(r, 0;P [fq]) +N(r,∞; f)

}
+ S(r, P [fq]) for p = 0.

(4) NL(r, 1;G) ≤ 1
p

{
N(r, 0;P [fq]) +N(r,∞; f)

}
+ S(r, P [fq]) for p ≥ 1.

Proof. First we note that in view of Lemma 3.1, we get S(r,=(f)) = S(r, f).
By using Lemma 3.2, we obtained when p = 0,

NL(r, 1;F) ≤ N(r, 1;F)−N(r, 1,F)

≤ N(r, 0;=(fq)) +N(r,∞;=(fq)) + S(r, f)

≤ N(r, 0;=(fq)) +N(r,∞; f) + S(r, f).

When p ≥ 1, we get by using Lemma 3.2

NL(r, 1;F) ≤ N(r, 1;F| ≥ p+ 1)

≤ 1

p

{
N(r, 1;F)−N(r, 1,F)

}
≤ 1

p

{
N(r, 0;=(fq)) +N(r,∞;=(fq))

}
+ S(r, f)

≤ 1

p

{
N(r, 0;=(fq)) +N(r,∞; f)

}
+ S(r, f).

Combining the two cases we get the proof.
Similarly we can prove the other one. �

Lemma 3.5. Suppose that F and G share (1, p), where 0 ≤ p <∞. If F 6≡ G
and q ≥ k + 1, then

(1) for p ≥ 1,

N(r, 0; f) ≤ N(r, 0;P [fq])

≤ 2 + p

pγm − 2
N(r,∞; f) +

2p

pγm − 2
(T (r,=(fq)) + T (r, P [fq])) .

(2) for p = 0,

N(r, 0; f) ≤ N(r, 0;P [fq])

≤ 3

γm − 2
N(r,∞; f) +

2

γm − 2
(T (r,=(fq)) + T (r, P [fq])) ,

where γm = min1≤j≤t
{

2dMj
− ΓMj

}
n− 1.
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Proof. We define Φ = F ′
F−1 −

G′
G−1 . We now split the problem in two cases as

follows:
Case 1. Suppose that Φ ≡ 0. Then by integration, we have

F − 1 ≡ B(G − 1).

Let if possible z0 be a zero of f , then B = 1 which contradicts F 6≡ G. Thus
we get N(r, 0; f) = S(r, f) and the result is hold.
Case 2. So, we suppose that Φ 6≡ 0. Let us suppose that z0 be a zero of f of
order s, then z0 would be a zero of F of order sqd(P )n and from [2, Lemma
2.5], we see that z0 be a zero of G of order min1≤j≤t

{
(s+ 1)dMj

− ΓMj

}
n.

Therefore, it is clear that z0 is a zero of Φ of order at least

min

{
qd(P )n− 1, min

1≤j≤t

{
2dMj

− ΓMj
}n− 1}

= min
1≤j≤t

{
2dMj

− ΓMj

}
n− 1

= γm (say).

When p ≥ 1, then using Lemma 3.4, we have

N(r, 0; f)

≤ N(r, 0;P [fq])

≤ 1

γm
N(r, 0; Φ)

≤ 1

γm
N(r,∞; Φ) + S(r, P [fq])

≤ 1

γm

{
NL(e, 1;F) +NL(e, 1;G) +NL(e,∞;F) +NL(e,∞;G)

+NL(e,∞;F|G 6=∞) +NL(e,∞;G|F 6=∞)

}
+ S(r, P [fq])

≤ 1

γm

{
1

p

[
N(r, 0;=(fq)) +N(r, 0;P [fq]) + 2N(r,∞; f)

]
+N(r,∞; f)

+

2∑
i=1

(
N(r, αi;=(fq)) +N(r, αi;P [f ])

)}
+ S(r, P [fq])

≤ 1

γm

{
2

p
N(r, 0;P [fq]) +

(
2

p
+ 1

)
N(r,∞; f) + 2

{
T (r,=(fq))

+ T (r, P [fq])

}}
+ S(r, P [fq]),

i.e.,

N(r, 0; f) ≤ N(r, 0;P [fq])
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≤ 2 + p

pγm − 2
N(r,∞; f) +

2p

pγm − 2

{
T (r,=(fq)) + T (r, P [fq])

}
.

When p = 0, then proceeding exactly same way as done in above, we get

N(r, 0; f) ≤ N(r, 0;P [fq])

≤ 3

γm − 2
N(r,∞; f) +

2

γm − 2

{
T (r,=(fq)) + T (r, P [fq])

}
.

�

Lemma 3.6. Let F and G share (1, p), where F and G defined as earlier. If
F 6≡ G, then

(1) for p = 0,

N(r,∞; f)(3.1)

≤ γm
(δ − 2)(γm − 2)− 3

{
T (r,=(fq)) + T (r, P [fq])

}
+ S(r, P [fq]) + S(r, f),

(2) for p ≥ 1,

N(r,∞; f)(3.2)

≤ 2p2 + pγm − 2

(pδ − 2)(pγm − 2)− p(2 + p)

{
T (r,=(fq)) + T (r, P [fq])

}
+ S(r, P [fq]) + S(r, f),

where δ = (n− 2)d(P )− 1 and γm = min1≤j≤t
{

2dMj − ΓMj

}
n− 1.

Proof. Let us define Ψ = F ′
F(F−1) −

G′
G(G−1) .

Case 1. Suppose Ψ ≡ 0.
By integration, we get

(
1− 1

F
)

= A
(
1− 1

G
)
. As =(fq) and P [fq] share

(∞, 0), so if N(r,∞; f) 6= S(r, f) then A = 1, i.e., F = G, which is not
possible. So, N(r,∞; f) = S(r, f). Thus the lemma holds.
Case 2. Let Ψ 6≡ 0.

Let z0 be a pole of f of order r, then it is a pole of =(fq) of order rd(P )
and of P [fq] of order rd(P ) + ΓP and that of F and G are rd(P )(n − 2) and
(rd(P ) + ΓP )(n− 2) respectively.

Clearly z0 is a zero of F
′

F−1−
F ′
F and G′

G−1−
G′
G of order at least (n−2)d(P )−1

and (d(P ) + ΓP )(n−2)−1 respectively and hence a zero of Ψ of order at least,

min{(n− 2)d(P )− 1, (d(P ) + ΓP )(n− 2)− 1}
= (n− 2)d(P )− 1 = δ (say).

Thus using Lemma 3.4, we get for p ≥ 1,

N(r,∞; f)

≤ 1

δ
N(r, 0; Ψ)
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≤ 1

δ
N(r,∞; Ψ) + S(r, P [f ]) + S(r, f)

≤ 1

δ

{
NL(r, 1;F) +NL(r, 1;G) +N(r, 0;P [fq])

}
+ S(r, P [fq]) + S(r, f)

≤ 1

δ

[
1

p

{
N(r, 0;=(fq)) +N(r,∞; f) +N(r, 0;P [fq]) +N(r,∞; f)

}
+N(r, 0;P [fq])

]
+ S(r, P [fq]) + S(r, f).

Thus using Lemma 3.5, we get(
δ − 2

p

)
N(r,∞; f)

≤ N(r, 0;P [fq]) +
1

p

{
T (r,=(fq)) + T (r, P [fq])

}
+ S(r, P [fq]) + S(r, f),

i.e.,

N(r,∞; f)

≤ p

pδ − 2
N(r, 0;P [fq]) +

1

pδ − 2

{
T (r,=(fq)) + T (r, P [fq])

}
+ S(r, P [fq])

+ S(r, f)

≤ p(2 + p)

(pδ − 2)(pγm − 2)
N(r,∞; f) +

[
2p2

(pδ − 2)(pγm − 2)
+

1

pδ − 2

]
×
{
T (r,=(fq)) + T (r, P [fq])

}
+ S(r, P [fq]) + S(r, f),

i.e.,

N(r,∞; f)

≤ 2p2 + pγm − 2

(pδ − 2)(pγm − 2)− p(2 + p)

{
T (r,=(fq)) + T (r, P [fq])

}
+ S(r, P [fq])

+ S(r, f).

Next for p = 0, using Lemmas 3.4, 3.5 and proceeding exactly as above we get

N(r,∞; f)

≤ γm
(δ − 2)(γm − 2)− 3

{
T (r,=(fq)) + T (r, P [fq])

}
+ S(r, P [fq]) + S(r, f).

This completes the proof. �

Lemma 3.7. If H 6≡ 0 and F and G share (1, p), then

N(r,∞;H)(3.3)

≤ N(r,∞; f) +N(r, 0;=(fq)) +N(r, 0;P [fq]) +N(r, b;=(fq))

+N(r, b;P [fq]) +NL(r, 1;F) +NL(r, 1;G) +N0(r, 0; (=(fq))
′
)



1194 M. B. AHAMED

+N0(r, 0; (P [fq])′),

where N0(r, 0; (=(fq))
′
) denotes the counting function of all those zeros of

(=(fq))
′

which are not the zeros of =(fq)(=(fq) − b) and F − 1. Similar
expressions holds for P [fq].

Proof. If we use the following fact, then the proof will be easy. A zero of fq may
not be a zero of P [fq] but an elementary calculations shows that when q ≥ k+1,
then each zeros of fq must be a zero of P [fq], so we haveN(r, 0;F) ≤ N(r, 0;G).
Also we note that N(r,∞;F) ≤ N(r,∞; f)+N(r, α1;=(fq))+N(r, α2;=(fq)).
But note that the simple zeros of =(fq)−αi are not the poles of H and multiple
zeros of =(fq) − αi are zeros of (=(fq))

′
. Similar explanations hold for G

also. �

Lemma 3.8 ([1]). Let φ(w) = (n−1)2(wn−2−1)(wn−1)−n(n−2)(wn−1−1)2.
Then

φ(w) = (w − 1)4
2n−6∏
i=1

(w − βi),

where βi ∈ C∗ − {1}, (i = 1, 2, . . . , 2n− 6), which are distinct.

4. Proofs of the theorems

Proof of Theorem 2.1. We split the whole proof into two different cases as fol-
lows.
Case 1. In this case, we assume that H 6≡ 0. So, one can see that F 6≡ G.

We note that N(r, 1;F| = 1) = N(r, 1;G| = 1) ≤ N(r,∞;H).
By using the Second Fundamental Theorem and Lemma 3.4, we get

(n+ 1)T (r,=(fq))(4.1)

≤ N(r,∞; f) +N(r, 0;=(fq)) +N (r, b;=(fq)) +N(r, 1;F)

−N0

(
r, 0, (=(fq))

′)
+ S(r, f)

≤ 2

{
N(r,∞; f) +N(r, b;=(fq))

}
+

{
N(r, 0;=(fq)) +N(r, 0;P [fq])

+N (r, b;P [fq])

}
+

{
N(r, 1;F| ≥ 2) +NL(r, 1;F) +NL(r, 1;G)

+N0 (r, 0; (P [fq])′)

}
+ S(r, f).

Subcase 1.1. When p ≥ 2. Then we have the following

N(r, 1;F| ≥ 2) +NL(r, 1;F) +NL(r, 1;G) +N0 (r, 0; (P [f ])′)(4.2)

≤ N(r, 1;G| ≥ 2) +N(r, 1;G| ≥ 3) +N0 (r, 0; (P [f ])′)

≤ N

(
r, 0; (P [f ])′

∣∣∣∣P [f ] 6= 0

)
+ S(r, P [f ])
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≤ N

(
r,∞;

(P [fq])′

P [fq]

)
+ S(r, P [fq])

≤ N (r, 0;P [fq]) +N(r,∞; f) + S(r, P [fq]).

With the help of this, note that (4.1) becomes

(n+ 1)T (r,=(fq))(4.3)

≤ 2

{
N(r,∞; f) +N(r, b;=(fq))

}
+ 2N (r, 0;P [fq])

+N(r, 0;=(fq)) +N (r, b;P [fq]) +N(r,∞; f) + S(r, P [fq]) + S(r, f).

Similarly for P [fq], we get

(n+ 1)T (r, P [fq])(4.4)

≤ 2

{
N(r,∞; f) +N (r, b;P [fq])

}
+ 2N(r, 0;=(fq))

+N (r, 0;P [fq]) +N(r, b;=(fq)) +N(r,∞; f) + S(r, P [fq]) + S(r, f).

Adding (4.3) and (4.4), we obtained

(n+ 1)

{
T (r,=(fq)) + T (r, P [fq])

}
(4.5)

≤ 6N(r,∞; f) + 3

{
N(r, 0;=(fq)) +N(r, 0;P [fq]

}
+ 3

{
N(r, b;=(fq)) +N(r, b;P [fq])

}
+ S(r, P [fq]) + S(r, f),

i.e.,

(n− 5)

{
T (r,=(fq)) + T (r, P [fq])

}
(4.6)

≤ 6N(r,∞; f) + S(r, P [fq]) + S(r, f).

Using Lemma 3.6 in (4.6), we get

(n− 5)

{
T (r,=(f)) + T (r, P [fq])

}
≤ 6(2p2 + pγm − 2)

(pδ − 2)(pγm − 2)− p(2 + p)

(
N(r, 0;=(fq)) +N(r, 0;P [fq])

)
+ S(r, P [fq])

+ S(r, f)

≤ 6(2p2 + pγm − 2)

(pδ − 2)(pγm − 2)− p(2 + p)

{
T (r,=(fq)) + T (r, P [fq])

}
+ S(r, P [fq])

+ S(r, f),
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which contradicts n > 5 + 6(2p2+pγm−2)
(pδ−2)(pγm−2)−p(2+p) .

Subcase 1.2. Let p = 1. We see that

N(r, 1;F| ≥ 2) +NL(r, 1;F) +NL(r, 1;G) +N0 (r, 0; (P [f ])′)(4.7)

≤ N(r, 1;G| ≥ 2) +N(r, 1;F| ≥ 2) +N0 (r, 0; (P [fq])′)

≤ N

(
r, 0; (P [fq])′

∣∣∣∣P [fq] 6= 0

)
+

1

2
N

(
r, 0; (=(fq))

′
∣∣∣∣=(fq) 6= 0

)
+ S(r, P [fq]) + S(r, f)

≤ N(r, 0;P [fq]) +N(r,∞;P [fq]) +
1

2

{
N(r, 0;=(fq)) +N(r,∞; f)

}
+ S(r, P [fq]) + S(r, f).

Thus we get from (4.1),

(n+ 1)T (r,=(fq))(4.8)

≤ 5

2

{
N(r,∞; f) +N(r, 0;=(fq))

}
+ 2N (r, 0;P [fq]) +

{
N(r, 0;=(fq))

+N (r, b;P [fq]) +N(r,∞; f)

}
+ S(r, P [f ]) + S(r, f).

Similarly for P [fq], we get

(n+ 1)T (r, P [fq])(4.9)

≤ 5

2

{
N(r,∞; f) +N(r, 0;P [fq])

}
+ 2N (r, 0;=(fq)) +

{
N(r, 0;P [fq])

+N (r, b;=(fq)) +N(r,∞; f)

}
+ S(r, P [fq]) + S(r, f).

Adding (4.8) and (4.9), we get

(n+ 1)

{
T (r,=(fq)) + T (r, P [fq])

}
(4.10)

≤ 7N(r,∞; f) +
11

2

{
N(r, 0;=(fq)) +N(r, 0;P [fq])

}
+

{
N(r, b;=(fq)) +N(r, b;P [fq])

}
+ S(r, P [fq]) + S(r, f),

i.e., (
n− 11

2

){
T (r,=(fq)) + T (r, P [fq])

}
(4.11)

≤ 7N(r,∞; f) + S(r, P [fq]) + S(r, f).
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So using Lemma 3.6 in (4.11), we get(
n− 11

2

){
T (r,=(fq)) + T (r, P [fq])

}
(4.12)

≤ γm
(δ−2)(γm−2)−3

{
N(r, 0;=(fq))+N(r, 0;P [fq])

}
+S(r, P [fq])

+ S(r, f)

≤ γm
(δ−2)(γm−2)−3

{
T (r,=(fq))+T (r, P [fq])

}
+S(r, P [fq])+S(r, f),

which contradicts n > 11
2 + γm

(δ−2)(γm−2)−3 .

Subcase 1.3. Let p = 0.
Using the Second Fundamental Theorem and Lemma 3.7, we get

(n+ 1)

{
T (r,=(fq)) + T (r, P [fq])

}
(4.13)

≤ N(r,∞;=(fq)) +N(r,∞;P [fq]) +N(r, 0;=(fq)) +N (r, 0;P [fq])

+N(r, b;=(fq)) +N (r, b;P [fq]) +N(r, 1;F ) +N(r, 1;G)

−N0(r, 0; (=(fq))
′
)−N0 (r, 0; (P [fq])′) + S(r, P [fq]) + S(r, f)

≤ 3N(r,∞; f) + 2N(r, 0;=(fq)) + 2N(r, 0;P [fq]) + 2N(r, b;=(fq))

+ 2N (r, b;P [fq]) +N(r, 1;F) +N(r, 1;G)−N(r, 1;F| = 1)

+NL(r, 1;F) +NL(r, 1;G) + S(r, P [fq]) + S(r, f).

Again,

N(r, 1;F) +N(r, 1;G)−N(r, 1;F| = 1) ≤ NL(r, 1;F) +N(r, 1;G),

i.e.,

N(r, 1;F) +N(r, 1;G)−N(r, 1;F| = 1)

≤ 1

2

{
NL(r, 1;F) +NL(r, 1;G) +N(r, 1;G) +N(r, 1;F)

}
.

So in view of Lemma 3.4 and Lemma 3.6, from (4.13), we have

(n+ 1)

{
T (r,=(fq)) + T (r, P [fq])

}
(4.14)

≤ 3N(r,∞; f) + 2N(r, 0;=(fq)) + 2N(r, 0;P [fq]) + 2N(r, b;=(fq))

+ 2N(r, b;P [fq]) +
3

2

{
NL(r, 1;F) +NL(r, 1;G)

}
+

1

2

{
N(r, 1;F)

+N(r, 1;G)

}
+ S(r, P [fq]) + S(r, f),
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i.e.,

(n− 6)

{
T (r,=(fq)) + T (r, P [fq])

}
≤ 6N(r,∞; f) + 3

{
NL(r, 1;F) +NL(r, 1;G)

}
+ S(r, P [fq]) + S(r, f)

≤ 6N(r,∞; f) + 3

{
N (r, 0;P [fq]) +N(r, 0;=(fq)) + 2N(r,∞; f)

}
+ S(r, P [fq]) + S(r, f).

Thus

(n− 11)

{
T (r,=(fq)) + T (r, P [fq])

}
≤ 12γm

(δ − 2)(γm − 2)− 3

{
N(r, 0;=(fq)) +N(r, 0;P [fq])

}
+ S(r, P [fq])

+ S(r, f)

≤ 12γm
(δ − 2)(γm − 2)− 3

{
T (r,=(fq)) + T (r, P [fq])

}
+ S(r, P [fq]) + S(r, f),

which contradicts n > 11 + 12γm
(δ−2)(γm−2)−3 .

Case 2. Let H ≡ 0.
It is clear that F and G share (1,∞).

By integration twice, we have

F =
AG + B
CG +D

or G =
−DF + B
CF −A

,(4.15)

where A,B, C,D are constants satisfying AD − BC 6= 0.
Next by applying Mokhon’ko’s Lemma, we get [9]

(4.16)
T (r,=(fq)) =

1

n
T (r,F) + S(r, f),

T (r, P [fq]) =
1

n
T (r,G) + S(r, P [fq]).

From (4.15), we get T (r,F) = T (r,G) +O(1), i.e., T (r,=(fq)) = T (r, P [fq]) +
O(1). Clearly from equation (4.15), if C 6= 0, we get N(r,∞; f) = S(r, f).

As AD−BC 6= 0, so A = C = 0 is not possible. So we consider the following
cases:
Subcase 2.1. Let AC 6= 0. This implies A 6= 0 and C 6= 0.
Subcase 2.1.1. Let B = 0. Then we must have D 6= 0 otherwise AD−BC = 0.

In this case, (4.15) reduces to

F =
AG
CG +D

.(4.17)

Since N(r,∞; f) = S(r, f), it follows from (4.17) that N
(
r,−DC ;G

)
=

N(r,∞;F) = S(r, f).
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Applying Second Fundamental Theorem, we get

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N

(
r,−D
C

;G
)

+ S(r,G)

≤ N(r,∞;G) +N(r, 0;G) + S(r, P [fq])

≤ N(r,∞; f) +

2∑
i=1

N (r, αi;P [fq]) +N(r, 0;P [fq]) + S(r, P [fq])

≤ 3

n
T (r,G) + S(r, P [fq]),

a contradiction as n > 5.
Subcase 2.1.2. Let B 6= 0.

In this case, we have

G +
B
A

=
(BC −AD)F
A(CF −A)

.

By applying Second Fundamental Theorem, we get

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N

(
r,−B
A

;G
)

+ S(r,G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, 0;F) + S(r, P [fq])

≤ N(r,∞; f) +

2∑
i=1

N (r, αi;P [fq]) +N(r, 0;P [fq]) +N(r, 0;=(fq))

+ S(r, P [fq])

≤ 4

n
T (r,G) + S(r, P [fq]),

which is a contradiction as n > 5.
Subcase 2.2. Let AC = 0.
Subcase 2.2.1. Let A = 0 and C 6= 0.
In this case B 6= 0 and F = 1

γG+δ , where γ = C
B and δ = D

B .

If F has no 1-point, then by the Second Fundamental Theorem and (4.16),
we get

T (r,F)

≤ N(r,∞;F) +N(r, 0;F) +N(r, 1;F) + S(r,F)

≤ N(r,∞; f) +

2∑
i=1

N(r, αi;=(fq)) +N(r, 0;=(fq)) + S(r,F)

≤ 3

n
T (r,F) + S(r,F),

which contradicts n > 5.
Thus γ + δ = 1 and γ 6= 0.
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So,

F =
1

γG + 1− γ
.

From above we get N
(
r, 1

1−γ ;F
)

= N(r, 0;G).

If γ 6= 1, by the Second Fundamental Theorem and (4.16), we get

T (r,F) ≤ N(r,∞;F) +N(r, 0;F) +N

(
r,

1

1− γ
;F
)

+ S(r,F)

≤ N(r,∞;=(fq)) +

2∑
i=1

N(r, αi;=(fq)) +N(r, 0;=(fq))

+N(r, 0;P [fq]) + S(r,F)

≤ 4

n
T (r,F) + S(r,F),

which is a contradiction as n > 5.
Thus γ = 1 and hence FG ≡ 1 which yields

a2(=(fq))n(P [fq])n = n2(n− 1)2
2∏
i=1

(=(fq)− αi)
2∏
i=1

(P [fq]− αi).

Let z1 be a pole of f of order r, then it must be a pole of =(fq) and
P [fq] of order d(P )r and d(P )r + ΓP respectively and from above we get
nd(P )r + n(d(P )r + ΓP ) = 2d(P )r + 2(d(P )r + ΓP ), i.e., n = 2. This is not
possible since from the hypothesis of Theorem 2.1 we see that n > 2. Thus
from the above equation it is clear that f has no pole.

Let =(fq)−αi = b1
∏r

i
j=1(f−αij)pij , where 1 ≤ i ≤ 2, 1 ≤ ri ≤ d(P ) and 1 ≤

pij ≤ d(P ), ri, pij ∈ N. Let z0 be a αij-point of f of order s, j = 1, 2, . . . , ri,
then as these types of points can only be neutralized by the zeros of P [f ], we
must have s ≥ q(≥ k+1). Consequently we have N(r, αij ; f) ≤ 1

k+1N(r, αij ; f),
for j = 1, 2, . . . , r for i = 1, 2. Thus by the Second Fundamental Theorem, we
get

(r1 + r2 − 1)T (r, f) ≤

(
2∑
i=1

ri − 1

)
T (r, f)(4.18)

≤ N(r,∞; f) +

r1∑
j=1

N(r, α1j ; f) +

r2∑
j=1

N(r, α2j ; f) + S(r, f)

≤
r1∑
j=1

1

k + 1
N(r, α1j ; f) +

r2∑
j=1

1

k + 1
N(r, α2j ; f) + S(r, f)

≤ (r1 + r2)

k + 1
T (r, f) + S(r, f),

which is a contradiction if r1 + r2 ≥ 3.
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Next suppose r1+r2 = 2, which implies that r1 = 1 = r2. So let =(fq)−α1 =

b1(f − α∗1)d(P ) and =(fq) − α2 = b1(f − α∗2)d(P ). Now by the same argument
as above if we assume z1 be a α∗1-point of f of order s, we see that n ≤ d(P )s

and hence similar to (4.18), we get, T (r, f) ≤ 2d(P )
n T (r, f) +S(r, f), which is a

contradiction as n > 2d(P ).
Subcase 2.2.2. Let A 6= 0 and C = 0.

In this case D 6= 0 and F = λG + µ, where λ = A
D and µ = B

D .
If F has no 1-point, then similarly as above we get a contradiction.

Thus λ+ µ = 1 with λ 6= 0.
Clearly N

(
r, 0;G + 1−λ

λ

)
= N(r, 0;F).

If λ 6= 1, then by the Second Fundamental Theorem and (4.16), we get

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N

(
r, 0;G +

1− λ
λ

)
+ S(r,G)

≤ N(r,∞;P [fq]) +

2∑
i=1

N (r, αi;P [fq]) +N (r, 0;P [fq])

+N(r, 0;=(fq)) + S(r, P [fq])

≤ 5

n
T (r,G) + S(r,G),

which contradicts n > 5.
Thus λ = 1 and hence F ≡ G. Therefore

n(n− 1)=(fq)2P [fq]2
{

(=(fq))n−2 − (P [fq])n−2

}
−2n(n− 2)b =(fq)P [fq]

{
(=(fq))n−1 − (P [fq])n−1

}
+(n− 1)(n− 2)b2

{
(=(fq))n − (P [fq])n

}
= 0.

By substituting h = P [fq ]
=(fq) , we get

n(n− 1)(=(fq))2h2
(
hn−2 − 1

)
− 2n(n− 2)bh(=(fq))

(
hn−1 − 1

)
(4.19)

+(n− 1)(n− 2)b2 (hn − 1) = 0.

If h is non constant, then using Lemma 3.8, we obtained from (4.19),

{n(n− 1)h =(fq)(hn−2 − 1)− n(n− 2)b(hn−1 − 1)}2

= − n(n− 2)b2(h− 1)4
2n−6∏
i=1

(h− βi).

By applying the Second Fundamental Theorem, we get

(2n− 6)T (r, h) ≤ N(r,∞;h) +N(r, 0;h) +

2n−6∑
i=1

N(r, βi;h) + S(r, h)
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≤ N(r,∞;h) +N(r, 0;h) +
1

2

2n−6∑
i=1

N(r, βi;h) + S(r, h)

≤ (n− 1)T (r, h) + S(r, h),

which contradicts n > 5.
Thus h is constant. Hence as f is non-constant and b 6= 0, we get from the

equation (4.19), that hn−2−1 = 0, hn−1−1 = 0 and hn−1 = 0, i.e., hd−1 = 0,
where d = gcd(n, n− 1, n− 2) = 1. Consequently =(fq) ≡ P [fq].

An elementary calculation shows that

f(z) = c exp

(
λ

q
z

)
,

is a certain solution of =(fq) ≡ P [fq], where c is a non-zero constant with

λQMj = 1 for all j = 1, 2, . . . , t . �

Proof of Theorem 2.2. We suppose that f be a non-constant entire function.
So, N(r,∞; f) = S(r, f). The rest of the proof can be carried out exactly same
way as in the line of the proof of Theorem 2.1. �

Proof of Corollary 2.1. Let H 6≡ 0. Let f be a non-constant entire function
such thatN(r, 0; f) = S(r, f), then it is clear thatN(r, 0; fq) = S(r, f). So from
Lemma 3.3, it follows that N(r, 0; (fq)(k)) = S(r, f). Here we put =(fq) = fq

and P [fq] = (fq)(k).
In this situation proceeding exactly in the same way as done in Theorem

2.1, we get from (4.5), n > 2, from (4.10), n > 2 and from (4.14), n > 4. So
we omit the details. �

5. Concluding remarks and some open questions

Based on our discussions in Note 1.3, and also in Theorems 2.1 and 2.2, we
observe that it is not always possible to find the general meromorphic solution,
rather than a particular solution, of the relation =(fq) ≡ P [fq].

So for the future investigations in this direction, we now pose the following
questions.

Question 5.1. What is the general meromorphic solution of =(fq) ≡ P [fq]?

Question 5.2. Keeping all other conditions intact of Theorems 2.1 and 2.2, is
it possible to extend the expression =(fq) up to another differential polynomial
Q[fq] to get the same conclusions?

Question 5.3. Without imposing any extra conditions, it possible to reduce
the cardinality of the set S further in Theorems 2.1 and 2.2, to get the same
conclusions?
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