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ON U-GROUP RINGS

Emad Abu Osba, Hasan Al-Ezeh, and Manal Ghanem

Abstract. Let R be a commutative ring, G be an Abelian group, and let

RG be the group ring. We say that RG is a U-group ring if a is a unit in

RG if and only if ε(a) is a unit in R. We show that RG is a U-group ring
if and only if G is a p-group and p ∈ J(R). We give some properties of

U-group rings and investigate some properties of well known rings, such
as Hermite rings and rings with stable range, in the presence of U-group

rings.

1. Introduction

Throughout this paper all rings considered are commutative with unity and
all groups are assumed to be Abelian. Let J(R), Nil(R) and U(R) denote the
Jacobson radical of R, the nil radical of R and the set of units of R, respectively.

Let R be a ring and let G be a group. Define RG = {
∑n
i=1 aigi : ai ∈

R, gi ∈ G,n ∈ N}. Let ε : RG → R be the ring homomorphism defined by

ε
(∑

g∈G agg
)

=
∑
g∈G ag, see [3]. Let ∆(G) = ker(ε) = {a ∈ RG : ε(a) = 0}.

If g ∈ G is of order n < ∞, then let ĝ = 1 + g + g2 + · · · + gn−1 and it is
clear that if f ∈ 〈g〉, then fĝ = ε(f)ĝ. For each a =

∑n
i=1 aigi ∈ RG, let

Supp(a) = {gi : ai 6= 0}. For each n ∈ N, let Cn = 〈g〉 be the multiplicative
cyclic group of order n.

In this article we define U-group rings to be group rings RG such that
a ∈ U(RG) if and only if ε(a) ∈ U(R) and we investigate some basic properties
of them. It was proved in [1] that if G is a p-group and p ∈ J(R), then RG is a
U-group ring and here we show that the converse is also true. For U-group rings
many algebraic properties are shared by RG and R, as in [1] and [10]. This
article is a continuation of the work done on these two articles. We show that
if RG is a U-group ring, then RG has stable range d if and only if R has. We
also show that if RG is a U-group ring, then RG is d-Hermite if and only if R
is. Finally we use properties of U-group rings to show that if a positive integer
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n is not a power of a prime number, then the combinations:
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n−1
)

are relatively prime.

2. U-group rings

While it is clear that if a ∈ U(RG), then ε(a) ∈ U(R), the converse is not
in general true. If C2 = 〈g〉, then ε(1 + g) = 2 ∈ U(R), where R is the field
of real numbers, while 1 + g /∈ U(RC2), because 0 = (1− g)(1 + g). To ensure
that the converse is true, we give the following definition.

Definition 1. Let R be a ring and let G be a group. We say that the group
ring RG is a U-group ring provided that a ∈ U(RG) if and only if ε(a) ∈ U(R).

We first investigate some basic properties of U-group rings.

Theorem 2. The group ring RG is a U-group ring if and only if RH is a
U-group ring for any (finitely generated) subgroup H of G.

Proof. Assume that RG is a U-group ring, and H is any subgroup of G. Let
a =

∑
aihi ∈ RH such that

∑
ai ∈ U(R). Since RG is a U-group ring, there

exists b ∈ RG such that ab = 1. But it follows from [3, Proposition 4(i)] that
b ∈ 〈Supp(b)〉 ≤ 〈Supp(a)〉 ≤ H. Thus RH is a U-group ring.

For the converse, let a =
∑
aigi ∈ RG such that

∑
ai ∈ U(R). Let H =

〈Supp(a)〉. Then H is finitely generated and RH is a U-group ring and so there
exists b ∈ RH ⊆ RG such that ab = 1. Thus, RG is a U-group ring. �

Theorem 3. Let R = R1 × R2 and let G be a group. Then RG is a U-group
ring if and only if RiG is a U-group ring for i = 1, 2.

Proof. We recall first that (R1 ×R2)G ' R1G×R2G with the isomorphism ϕ
mapping (a, b)g to (ag, bg).

Assume that RG is a U-group ring and let
∑n
i=1 aigi ∈ R1G such that∑n

i=1 ai ∈ U(R1). Then (
∑n
i=1 ai, 1) ∈ U(R) and so, (a1, 1)g1 + (a2, 0)g2+

· · ·+ (an, 0)gn ∈ U(RG), which implies that (
∑n
i=1 aigi, g1) ∈ U((R1 × R2)G)

and hence
∑n
i=1 aigi ∈ U(R1G).

Assume now that R1G and R2G are U-group rings and assume that
n∑
i=1

(ai, bi)gi ∈ RG,

with
∑n
i=1(ai, bi) = (

∑n
i=1 ai,

∑n
i=1 bi) ∈ U(R). Then

∑n
i=1 ai ∈ U(R1) and∑n

i=1 bi ∈ U(R2). Thus we have
∑n
i=1 aigi ∈ U(R1G) and

∑n
i=1 bigi ∈ U(R2G)

and hence,
∑n
i=1(ai, bi)gi = ϕ−1(

∑n
i=1 aigi,

∑n
i=1 bigi) ∈ U(RG). �

Looking for examples of U-group rings, we first investigate groups containing
elements of infinite order.

Theorem 4. Let G be a group containing elements of infinite order. Then RG
cannot be a U-group ring for any ring R.
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Proof. Let R be a ring and let g ∈ G such that |g| =∞.
If 2 /∈ Nil(R), then (1−2g)−1 =

∑∞
k=0(2g)k ∈ R(〈g〉)\RG, where R(〈g〉) =

{
∑∞
n=r ang

n : an ∈ R, r ∈ Z}, since (2g)n = (2g)m if and only if n = m. But
ε(1− 2g) = −1 ∈ U(R). So, RG cannot be a U-group ring.

If 2 ∈ Nil(R), then ε(1 + g + g2) = 3 = 1 + 2 ∈ 1 + J(R) ⊆ U(R). To show
that 1 + g + g2 /∈ U(RG), note that 1 + g /∈ Nil(RG), since |g| = ∞ and if
gn(1 + g)n = gm(1 + g)m, then

gn+

(
n

1

)
gn+1+

(
n

2

)
gn+2+· · ·+g2n = gm+

(
m

1

)
gm+1+

(
m

2

)
gm+2+· · ·+g2m,

and so, by uniqueness of representation in RG, we must have n = m.
Thus, (1+g+g2)−1 = (1+g(1+g))−1 =

∑∞
k=0(−1)k(g(1+g))k ∈ R(〈g〉)\RG.

So, RG cannot be a U-group ring. �

The result of Theorem 4 restricts our investigation of U-group rings to tor-
sion groups only.

Theorem 5. Let R be a ring and let G be a torsion group. Then the following
are equivalent:

(1) G is a p-group such that p ∈ J(R).
(2) ∆(G) ⊆ J(RG).
(3) RG is a U-group ring.

Proof. For the equivalence of (1) and (2), see [10] and for (1)⇒ (3), see [1].
(3) ⇒ (1) Assume that G contains elements g1 and g2 such that |g1| = p

and |g2| = q, where p and q are distinct primes. Then there exist n,m ∈ N
such that 1 = np+mq. Let a = nĝ1 +mĝ2. Then ε(a) = np+mq = 1 ∈ U(R).
But (1 − g1)(1 − g2)a = 0 and (1 − g1)(1 − g2) = 1 − g2 − g1 + g1g2 6= 0. So,
a /∈ U(RG) and RG is not a U-group ring.

Hence, if RG is a U-group ring, G must be a p-group.
Now, we show that p ∈ J(R). Let a ∈ R, g ∈ G such that |g| = p and let

f = (1 + ap) − aĝ. Then ε(f) = 1 and there exists h ∈ RG such that 1 = fh.

One can write h =
∑p−1
i=0 aig

i, by [3, Proposition 4(i)]. Thus we have

1 = (1 + ap)

p−1∑
i=0

aig
i − a

(
p−1∑
i=0

ai

)
ĝ,

and so,

1 = (1 + ap)a0 − a

(
p−1∑
i=0

ai

)
,

0 = (1 + ap)a1 − a

(
p−1∑
i=0

ai

)
.

Subtracting the two equations we get

1 = (1 + ap)(a0 − a1).
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Therefore, ε(1 + ap) = (1 + ap) ∈ U(R) and p ∈ J(R). �

Using the equivalent conditions in Theorem 5, we can deduce the following
proposition.

Proposition 6. Let RG be a U-group ring. Then

(1) [9, Page 138] RG is a local ring if and only if R is.
(2) [10, Theorem 2.3] RG is a clean ring (every element is a sum of a unit

and an idempotent) if and only if R is.
(3) [1, Theorem 3.8] RG is a présimplifiable ring (the zero-divisors are

contained in the Jacobson radical) if and only if R is.
(4) [1, Theorem 3.1(ii)] a ∈ J(RG) if and only if ε(a) ∈ J(R).
(5) [10, page 542] RG /J(RG) ' R /J(R) .
(6) [1, Theorem 3.1(iv)] If p ∈ Nil(R), then a ∈ Nil(RG) if and only if

ε(a) ∈ Nil(R).

Using Theorem 5 together with Theorem 2, we have the following corollary.

Corollary 7. Let R be a ring, H and K be groups and let G = H ×K. Then
RG is a U-group ring if and only if RH and RK are U-group rings.

3. Some applications

In this section, we investigate some properties of well known rings, such as
Hermite rings and stable range rings, in the presence of U-group rings.

3.1. Stable range of a ring

A sequence {a1, a2, . . . , an} in a ring R is said to be unimodular if a1R +
a2R+ · · ·+ anR = R. In case n ≥ 2, such a sequence is said to be reducible if
there exist r1, r2, . . . , rn−1 ∈ R such that (a1 + r1an)R+ (a2 + r2an)R+ · · ·+
(an−1 + rn−1an)R = R. A ring R is said to have stable range ≤ d if every
unimodular sequence of length greater than d is reducible. The smallest such
d is said to be the stable range of R. We write simply sr(R) = d. If no such d
exists, then we say sr(R) =∞, see [6].

If a ring S is a homomorphic image of a ring R, then sr(S) ≤ sr(R), in
particular, sr(R) ≤ sr(RG). Note that sr(Z) = 2 < sr(ZC2), since {3, 5, g} is
unimodular in ZC2, but it is not reducible.

Now, we show that if RG is a U-group ring, then we will get equality.

Theorem 8. Let RG be a U-group ring. Then sr(R) = sr(RG).

Proof. According to [6, Proposition 1.5], sr(R) = sr(R /J(R)) and since RG
is a U-group ring, we have R /J(R) ' R(G) /J(R(G)) . Thus, sr(R) =
sr(R /J(R)) = sr(R(G) /J(R(G))) = sr(RG). �

It is shown in [9, Proposition 4] that if R is a Boolean ring and G is a locally
finite group, then RG is clean and hence sr(RG) = 1. Thus one can see that
sr(RG) = 1 = sr(R), although RG is not necessarily a U-group ring.
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3.2. Hermite group rings

For any integer d ≥ 0, a ring R is called d-Hermite if any unimodular row
over R of length ≥ d + 2 can be completed to a square invertible matrix over
R. A 0-Hermite ring is simply called Hermite. Also, since if ax+ by = 1, then
the matrix

[
a b
−y x

]
is invertible, so 1-Hermite is still synonymous with Hermite,

see [6].
It is shown in [8] that if sr(R) = d, then R is a d-Hermite ring. However,

the converse is not in general true, since sr(Z) 6= 1 because 2Z + 5Z = Z, but
(2 + 5r)Z 6= Z, for any r ∈ Z, while Z is Hermite.

Theorem 9. Let R be a ring and let G be a group. If RG is a d-Hermite ring,
then so is R.

Proof. Assume that RG is a d-Hermite ring and let m ≥ d+2, (a1, a2, . . . , am),
(r1, r2, . . . , rm) ∈ Rm such that

∑m
i=1 airi = 1. Since RG is a d-Hermite ring,

there exists an m ×m matrix M over RG with first row (a1, a2, . . . , am) and
det(M) ∈ U(RG).

Assume M =


a1 a2 · · · am
a21 a22 · · · a2m
...

...
...

am1 am2 · · · amm

 .

Then det(M) =
∑
σ∈Sm

(sgnσ)aσ1a2σ2 · · · amσm ∈ U(RG). Since akj ∈ R(G)

for 2 ≤ k ≤ m, 1 ≤ j ≤ m, we have akj =
∑
g∈G akj,gg where akj,g ∈ R. So,

T = ε(det(M)) =
∑
σ∈Sn

(sgnσ)aσ1(
∑
g∈G a2σ2,g) · · · (

∑
g∈G amσm,g) ∈ U(R).

Now, consider L =


a1 a2 · · · am∑

g∈G a21,g
∑
g∈G a22,g · · ·

∑
g∈G a2m,g

...
...

...∑
g∈G am1,g

∑
g∈G am2,g · · ·

∑
g∈G amm,g

 .
Then, L is an m ×m matrix defined over R with det(L) = T ∈ U(R). Hence
R is a d-Hermite ring. �

We don’t know yet if the converse of Theorem 9 is true, but to have a partial
answer, we need to add an extra condition.

Theorem 10. Let RG be a U-group ring. Then R is a d-Hermite ring if and
only if RG is.

Proof. Suppose that R is a d-Hermite ring. Let rk =
∑
g∈G rkgg, ak =∑

g∈G akgg ∈ RG for 1 ≤ k ≤ m and m ≥ d + 2. If
∑m
i=1 rkak = 1, then

1 = ε(
∑m
i=1 rkak) =

∑m
i=1(

∑
g∈G rkg

∑
g∈G akg). Then there exists an m ×m
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matrix M over R such that

M =



∑
g∈G a1g

∑
g∈G a2g · · ·

∑
g∈G amg

b21 b22 · · · b2m
...

...
...

bm1 bm2 · · · bmm

 ,

and det(M) =
∑
σ∈Sm

(sgnσ)(
∑
g∈G aσig)b2σ2 · · · bmσm ∈ U(R).

By assumption we would have

S =
∑
σ∈Sn

(sgnσ)(
∑
g∈G

aσigg)b2σ2 · · · bmσm ∈ U(RG).

Now, let

B =



∑
g∈G a1gg

∑
g∈G a2gg · · ·

∑
g∈G amgg

b21 b22 · · · b2m
...

...
...

bm1 bm2 · · · bmm

 .

Then det(B) = S ∈ U(RG) and RG is a d-Hermite ring.
The other implication follows from Theorem 9. �

A ring R is called semilocal if R has only finitely many maximal ideals.
Fields and Artinian rings are examples of semilocal rings. In [7] it is proved
that a semilocal ring is Hermite. In [2] it is proved that a group ring RG of a
semilocal ring R and a finite group G is semilocal. So, the ring RC7 is Hermite
even though 7 /∈ J(R). This gives an example of a Hermite group ring RG,
which is not a U-group ring. Moreover, the torsionness of the group is not a
necessary condition as was proved in [5] that if R is semilocal with J(R) is nil,
then RZ is Hermite. In fact it is proved in [4] that if G is a finitely generated
Abelian group, then ZG is a Hermite ring, although ZG is not a U-group ring
for any group G.

Recall that an R-module M is a stably free module if there exist m,n ∈ N
such that M ⊕ Rm = Rn. If M is finitely generated, then we set rank(M) =
n −m. Clearly any free module is stably free. Since R is a d-Hermite ring if
and only if every finitely generated stably free R-module of rank ≥ d is free,
see [7], we get the following:

Corollary 11. Let RG be a U-group ring. Then every finitely generated stably
free R-module of rank ≥ d is free if and only if every finitely generated stably
free RG-module of rank ≥ d is free.
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3.3. Divisors of
(n
k

)
It is well known that if p is a prime integer and n ∈ N, then p |

(
pn

k

)
for all

0 < k < pn. Now, if n is an integer divisible by more than one prime, is there
a common divisor of

(
n
k

)
for all 0 < k < n? We first give the following simple

lemma.

Lemma 12. Let n be an integer greater than 1 and let 0 < k < n. Then
gcd(n,

(
n
k

)
) 6= 1.

Proof. It is clear that n
(
n−1
k−1
)

= k
(
n
k

)
and so, 1 6= gcd(n, n

gcd(n,k)

(
n−1
k−1
)
) =

gcd(n, k
gcd(n,k)

(
n
k

)
) = gcd(n,

(
n
k

)
). �

Theorem 13. Let n be a positive integer divisible by at least two distinct
primes. Then the integers

(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n−1
)

are relatively prime.

Proof. Assume that there exists a prime p such that p |
(
n
i

)
for all 0 < i < n.

Let a =
∑k
i=1 aigi ∈ ZpCn such that

∑k
i=1 ai ∈ U(Zp). Then an =∑k

i=1 a
n
i g
n
i +

n−1∑
i=1

(
n
i

)
yi =

∑k
i=1 a

n
i , where yi ∈ ZpCn for each i. Applying

the augmentation homomorphism we get:(
k∑
i=1

ai

)n
=

k∑
i=1

ani ,

and so we have:

an =

k∑
i=1

ani =

(
k∑
i=1

ai

)n
∈ U(Zp) ⊆ U(ZpCn).

Hence we have a ∈ U(ZpCn) and ZpCn is a U-group ring, contradicting
Theorem 5, since Cn is not a p-group. Thus the integers

(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n−1
)

are
relatively prime. �
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