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AN ALTERNATIVE ¢-ANALOGUE OF THE
RUCINSKI-VOIGT NUMBERS

WARDAH M. BENT-USMAN, AMERAH M. DIBAGULUN, MAHID M. MANGONTARUM,
AND CHARLES B. MONTERO

ABSTRACT. In this paper, we define an alternative g-analogue of the
Rucinski-Voigt numbers. We obtain fundamental combinatorial prop-
erties such as recurrence relations, generating functions and explicit for-
mulas which are shown to be g-deformations of similar properties for the
Rucinski-Voigt numbers, and are generalizations of the results obtained
by other authors. A combinatorial interpretation in the context of A-
tableaux is also given where convolution-type identities are consequently
obtained. Lastly, we establish the matrix decompositions of the Rucinski-
Voigt and the ¢g-Rucinski-Voigt numbers.

1. Introduction

Rucinski and Voigt [31] defined the numbers Sj}(a) as coefficients in the
expansion of the relation

(1) 2" =3 Sp(a)PR(a),

k=0

where a = (a,a +7,a+2r,a+ 3r,...) and

2)  Pi)=@-a)(@—(at+r)(@—(at+2r) - (z—(a+(k—1)r)).

These numbers, often referred to as the “Ruciniski-Voigt numbers” (see [14]),
are also known to satisfy the following combinatorial properties (cf. [14,31]):

e triangular recurrence relation

3) Sp (@) = Si_y(a) + (kr + a)Sii(a),
e exponential generating function
o0
n x’n 1 axr TT
(4) > S (@) 7= e (™~ iDL
n=~k
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e rational generating function

) S =

e explicit formulas

k
(7) Si(a) = Z H rj+a)°

cot+ci1+-+ecp=n—k j=0

Evidently, the well-known Stirling numbers of the second kind [9,32], denoted
by S(n, k), can be related to the Ruciriski-Voigt numbers as follows:

(8) Sk (m) = S(n, k),

where m = (0,1,2,3,...) is the sequence of nonnegative integers. It can also
be shown that several known generalizations of S(n, k) are particular cases of
the Rucinski-Voigt numbers. To be precise, we have
(i) the r-Stirling numbers of the second kind {Zi:}r of Broder [5] are given
by

n n+r
Sk () = {kJrr} ’

where a; = (r,r+ 1,7+ 2,74+ 3,...);
(ii) the Whitney numbers of the second kind of Dowling Lattices Wi, (n, k)
of Benoumbhani [3,4] are given by

St(ag) = Wi(n, k),

where ag = (1,1 +m,14 2m,1+ 3m,...);

(iii) the noncentral Stirling numbers of the second kind S, (n, k) of Koutras’
[21] (or Carlitz’ [7] weighted Stirling numbers of the second kind) are
given by

Sk (az) = Sa(n, k),
where ag = (—a,—a+1,—a+2,—a+3,...); and

(iv) the translated Whitney numbers of the second kind W(q)(n, k) first
defined by Belbachir and Bousbaa [2] and extensively studied in [25,27]
are given by

52(34) = W(oz) (na k‘),

where a4 = (0, o, 20, 3q, . . .).
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It is important to note that the Rucinski-Voigt numbers can be shown to
be equivalent to the numbers defined by Corcino [10], Mez6 [29], and Man-
gontarum et al. [24]. That is,

5t(0) = () SE) = Wi (k) S2(e) = W (0. 1),
B

where <Z>rﬁ’ Wi r(n, k) and Wa’m(mk‘) denote the (r, 8)-Stirling numbers,

r-Whitney and noncentral Whitney numbers of the second kinds, respectively,

and ¢ = (r,r+ B,r+28,r+38,...),d = (r,r + m,r + 2m,r + 3m,...), and

e=(—-a,—a+m,—a+2m,—a+3m,...).

The study of g-analogues of classical identities has been popular to a number
of mathematicians. This is, perhaps, due to its applications to diverse fields.
For the case of special sequences, it can be traced back to the works of Carlitz
[6] and Gould [17] on the g-analogues of the classical Stirling numbers, where
g-deformations of fundamental combinatorial properties were obtained. Cigler
[8], on the other hand, defined another g-analogue of the Stirling numbers
using the concept of set partitions. Motivated by this, a g-analogue of the r-
Stirling numbers was done by Corcino and Fernandez [12] using combinatorial
interpretations in terms of set partitions. The g-analogue of the translated
Whitney numbers was defined by Mangontarum et al. [23] by modification of
the horizontal generating function seen in [2]. Also, distinct g-analogues of the
multiparameter noncentral Stirling numbers were done by El-Desouky et al.
[16] and Corcino and Mangontarum [13].

In an earlier paper, Corcino and Montero [14] defined a g-analogue for the
Ruciniski-Voigt numbers, denoted by o[n, k]g "', via recurrence relation

(9) oln, k]qf’)’r =on—1,k— 1]5”” + ([kBlq + [r]g) oln — 1,k — 1]5”“.

The said g-analogue is known to satisfy the explicit formula [14, Theorem 3.2]

k

10) ol = i S0P O () G+l
7”7 lg =g qP
where
k n—j+1
ny T -1 [n]4!
1D (k>q a ]1;[1 ¢-1 [klg![n — Klg!

is the g-binomial coefficient, [n],! = [T\, [i]4 is the g-factorial of n and [n], =
q;:f is the g-integer (n and k are nonnegative integers). On the other hand, a ¢-
analogue of the r~-Whitney numbers of the second kind, denoted by Wi, , 4(n, k),

was introduced by Mangontarum and Katriel [26] as coefficients in

(12) (ma'a+r)" = Z MW ra(n, k) (a’)Fak,
k=0
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where af and a are the g-Boson operators [1] satisfying the commutation rela-
tion

(13) [a,a'], = aa’ — qata = 1.

By comparing (10) with the explicit formula of Wy, , ,(n, k) [26, Theorem 16]
given by

(14)  Wirg(n,0) = m[%ﬂq! D) (i) (mlK], + )",

it is obvious that the g-analogues o[n, k]qﬁ*’“ and W, , 4(n, k) are different from
one another. In fact, the former was motivated by Carlitz’ [6] definition of
the ¢-Stirling numbers of the second kind Sg[n, k] which is in terms of the
recurrence relation

(15) Syln, k] = Syln — 1,k — 1] + [K]4Sq[n — 1, &,

while the latter was motivated by the horizontal generating function (see [19,
26])

(16) (afa)" = Z Syn, k] (at)*a®.
k=1

Another g-analogue that is distinctly motivated is the g-noncentral Stirling
numbers of the second kind S, [n, k], defined by Corcino et al. [11] as follows:

(17)  Saln,kly = ¢F V7S [n — 1,k — 1), + [k — 4Saln — 1,k],.

This type of g-analogue was said to be adapted in the work of Ehrenborg
[15]. In [11], some combinatorial properties were obtained. These include
convolution-type formulas which were derived using the combinatorics of the
A-tablaux. Lastly, the Hankel transform of the sum of the numbers S, [n, k4,
called g-noncentral Bell numbers, is presented in the same paper.

The main concern of this paper is to define an alternative g-analogue of the
Rucinski-Voigt numbers that is consistent with (1) (makes use of the sequence
a), not motivated by the works of Carlitz’ [6] and Katriel [19], and generalizes
identities such recurrence relations, explicit formulas and generating functions
obtained by Corcino et al. [11] and Mangontarum et al. [23]. A combinato-
rial interpetation of this g-analogue is presented and some formulas including
convolution-type identities are obtained. Finally, matrix decompositions of the
Rucinski-Voigt numbers and the newly-defined g-analogue are established.

2. Definition and combinatorial properties

Let

(18) Qy*(x) = H [z = (a+ir)ly,
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where a = (a,a +r,a + 2r,a + 3r,...). For z > 0, nonnegative integers n and
k, and complex numbers a and r, we define the ¢g-Ruciiski-Voigt numbers (an
alternative g-analogue of the Rucinski-Voigt numbers), denoted by S7"*(a), as

coefficients of Q¥ (x) in the expansion of

n

(19) 2]y =D Sy (2)Qp ().

k=0
By convention, we set S;L’k(a) =0 forn < korn,k <0.

Theorem 2.1. The q-Ruciniski-Voigt numbers S;“k(a) have the following re-
currence relations:

(i) triangular:
(20) SpthF(a) = ¢ VSR @) + [a + k]S (a),

(ii) wvertical:

n—k
(21) SpthkH (a) = gotrk Z[a +r(k+1)]777 8" (a),
j=k
(iii) horizontal:
n—k n+1,k+j+1
n - {alr) k++1s+ (a)
(22) Syt (@) = ) (1) e e
§=0 <a‘7“>q,k+1 q ?
where (alr), . = [Tiz Ha + ril,.
Proof. Since
1
[z —a—rkly = ([z]g — [a+rk]y) W7
then
n+1

Z Sn-‘rl k Qk a( ) _ [x}g[x]q

(ZSM )Qq ™ ( )) (0" o= a=rklg + [a+ rkly)

n+1

_ Z {qa+r(k71)5(7;,k71(a) + [a + rk]ng"k(a)} Q];’a(l‘).
k=0

The triangular recurrence relation is obtained by comparing the coefficients of
Q’;va(m). The vertical recurrence relation can be derived by repeated application
of (20). That is,

Syt (@) = ¢*TES M (@) + ¢ M a + r(k + 1)],5; T (a)
+ " ot (e + DG @)
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+ q“'”k[a +rk+ 1)]25;‘_3’1“(3)

o g ot (k1] )
n—k
=Y latr(k+ D)8 (a),
j=k

Finally, by evaluating the right-hand side of (22) using (20), we get

Sn+1 k+]+1( )

(_1)j <a|r>q k+j+1
(alr) g k1 q(a”k)(j“)*’”(J?)

§=0
_ "ik(i i 8alr) g ppn qaﬂ(kﬂ)sg’kfj(a)
= (alr)y o q(a+rk)(j+1)+r(”§1)
+"—k(_ ;o lalr)g s Sg e )1
= <a‘r>q,k+1q(a+rk)(.7+1)+r(]g )
- nik(—l 5Ll g qamk”)sg’kﬁ(a)
j=1 <a|r> k41 q(aJrrk)(jH)M(J;l)

n,k+j
+Sn1€ +Z J 1 CL|,'Aqlc—i-j—',-1‘sf : ()
(@lr) (a+rk)3+r(2)

= S"’k(a).
These prove the theorem. O

Remark 2.2. The following observations are significant:
(i) From (20), we have

(23) Sq(a) = [aly
and
(24) S;zm(a) _ qr(g)Jran.

(ii) By taking the limits as ¢ — 1, the results in Theorem 2.1 reduce back
to the triangular, vertical and horizontal recurrence relations for the
classical Rucinski-Voigt numbers presented in [14].

(iii) When @ = —a and r = 1 in Theorem 2.1, we obtain the g-noncentral
Stirling numbers of the second kind [11, Definition 1 and Theorem 4].
That is,
(25) S;L’k(a5) = Sa[nvk]q7

where a5 = (—o,1 —a,2 — @,3 —a,...).

)



AN ALTERNATIVE ¢-ANALOGUE OF THE RUCINSKI-VOIGT NUMBERS 1061

(iv) When a = 0 and r = « in Theorem 2.1, we obtain the g-analogue of the
translated Whitney numbers of the second kind, denoted by w(Qa)n, klq
[23, Equations 30, 34 and 41]. That is,

(26) Sg’k(a4) = w?a)m kg
The defining relation in (19) may be expressed as
n j—1
[a+ Tk, = Z 57 (a) H[kr —irl,
j=0 i=0

() fsmtie

; k
2\ 0,
Applying the ¢-binomial inversion formula (see [9]) and since Hf;ol [kr —ir]y =
[k]qr![r]’;, we get

k . k—j
(27) S;"k(a) = szo(l)qur( 27) <§>qr[a+Tj]g.
Furthermore, let
t'n/
[n]q!
be the exponential generating function of S;%k (a). Then multiplying both sides
¢

of (27) by Wn, and summing over n gives

firlt) =) Sy (a)
n=0

k

(25) fk(t):m (—1)F-igr(s) (’;) e (tlatirl,).
q 4 j=0 q"

where e, (t [jr + d] q> is the g-exponential function defined by
(29) eq(2) = Z T

Making use of the explicit formula of the known g¢-difference operator (see the
work of Kim and Son [20]) given by

k .
(30) AR f(r) = 3 (—1)tig(*s) (’;) )

Jj=0

gives

Hence, we have proved the results in the next theorem.
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Theorem 2.3. The g-Rucinski- Voigt numbers Sg“k(a) satisfy the explicit for-
mula

(32) Stk (a) = ’”T 2") k la+ 7]}
’5;) <])qr ’

and the exponential generating function

oo

(33) frt) =" Sél’k@)[;;qy - {Ag (W) }I o

n=0 a
Remark 2.4. Observe that if we take the limits of (32) and (33) as ¢ — 1, we

get
1 k
nk: n
;l_}H%S TZ ()JT‘FG) = Si(a)
and
1 a re k _ - mn
lmy () = e (e~ 1 = 3 S

respectively. The first limit implies that S}*(a) is a proper g-analogue of the
numbers S} (a). We note that the exponential generating function in (33) still
holds when ¢ is replaced with [t],. That is,

(34) > 5pta) [[:LE! - {Ag (W) }m—o'

q

And when @ = —a and r = 1, (32) and (34) reduce to similar formulas for
the g-noncentral Stirling numbers of the second kind (cf. [11, Theorems 5 and
8]). Similarly, when ¢ = 0 and r = «, (32) and (34) reduce to similar formulas
for the g-analogue of the translated Whitney numbers of the second kind (cf.
[23, Theorem 2.11}).

Theorem 2.5. The q-Rucinski- Voigt numbers Sg’k(a) satisfy the rational gen-
erating function given by

nk n—k _ q
(35) Z SpF(a)t Hf:o (1 . mq)

and the explicit formula in complete symmetric polynomial form given by

r(g)-&-ka

)

n—k

(36) Sk (a) = g (2) e 3 I la+ 7, -

0<4j1 <ja <o S <k i=1

Proof. We will prove the results by induction on k. Let gi(¢) be the rational
generating function of Sg’k(a). When k£ = 0, we have

t)=>_ Splap" = [ait" = T _1[a] -
n=0 q

n=0
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Furthermore, with & > 0 and (20) we obtain

gk(t) = Z anrr(kfl)SZI’Lfl,kfl(a)t(nfl),(kfl)

n=~k
+tla+rklg Yy SR (a)yn o
n==k

= ¢t Vg (1) + tla + rk]gge(t).

Hence,

a+r(k—1)

q

R
1 —tla+ Tk}qgk 10

r(§)+ka

gr(t)

q .
I (1 tla+),)

Now, we note that (36) yields S0:°(a) = 1, which is in agreement with the initial
value of Sg*k(a). We suppose that (36) holds up ton for k = 0,1,2,...,n. Then
by (20),

n—(k—1)

Sy = ) (O 5 1 lo+ril,
0152 Snoo-nSh—1  i=1
. n—=k
+la+rk, | (2 > [ la+ril,

0<j1<j2 < <gn—k<k i=1
n+l—k

_ (e > I la+rid,.

0<j1<j2 < Shnp1-k<k =1

Finally, (36) yields S;H’nﬂ(a) = qT<”;rl)+a("+1) which is in agreement with
(24). This completes the proof. O

Remark 2.6. Apart from qT(S)HW, the right-hand side of (36) is in complete
symmetric polynomial form. We also observe that as ¢ — 1, the generating
function and explicit formula obtained in the previous theorem reduce back to
similar identities for the classical Rucinski-Voigt numbers. Now, if we replace
t with [t], in (35), we get

7‘(};)+ka

(37) S p— .
> ITo (1 = tlyfa+73],)

The results of Corcino et al. [11, Theorems 10 and 11] can be obtained from
this when @ = —a and r = 1 in (37) and (36), while the explicit formula for
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the g-analogue of Mangontarum et al. [23, Equation 57] is the case when a = 0
and r = « in (36).

3. In the context of A-tableaux

A 0-1 tableau is a pair ¢ = (A, f), where A = (Ay > Ay > --- > Ap) is a
partition of an integer m and f = (fij)1<j<x, is a “filling” of the cells of the
corresponding Ferrers diagram of shape A with 0’s and 1’s in such a way that
there is exactly one 1 in each column. In line with this, an A-tableau is defined
to be a list ® of column ¢ of a Ferrers diagram of A (by decreasing order of
length) such that the length |c| is part of a sequence A = (a;);>0, a strictly in-
creasing sequence of nonnegative integers. These tableaux were first introduced
in the paper of de Médicis and Leroux [28]. Combinatorial interpretations of
the Stirling numbers and their different extensions and generalizations can be
seen in the same paper and in subsequent works of others (see [11,14,22,23]).

Let w be a function from the set of nonnegative integers N to a ring K,
and suppose that ® is an A-tableau with r columns of length |c|. It is known
that ® might contain a finite number of columns whose lengths are zero since
0 € A and if w(0) # 0 (cf. [28]). Let T#(z,y) be the set of all A-tableaux
with A = {0,1,2,3,...,z} and exactly y columns, some of which are possibly
of length zero. The next theorem expresses the g-Ruciniski-Voigt numbers in
terms of a sum of weights of A-tableaux.

Theorem 3.1. Let w: N — K be a function from the set of positive integers
N to a ring K (column weights according to length) defined by w(|c|) = [a +
r|c|lq, where a and v are complex numbers, and |c| is the length of column ¢ of
an A-tableau in T (k,n — k). Then

(38) R DR | (!
PETA (kyn—k) c€ED
where a = (a,a+r,a+2r,a+3r,...).
Proof. Let ® in T4(k,n—k). This implies that ® has exactly n—k columns, say

€1,C2,...,Cn_k, whose lengths are ji, jo,. .., jn_k, respectively. Moreover, for
each column ¢; € ®,7=1,2,...,n—k, we have |¢;| = j; and w(|c;|) = [a+7]i,.
Hence, we get
n—~k n—=k
[T (e = [T wlel) = [Tla+riis.
€ i=1 i=1

Since ® € T4(k,n — k), then

S [ S Tt

T4 (k,n—k) ce® 0<71<j2 < <Jn— <k i=1
n—k

= Z H[a+7°ji]q-

0<j1<j2 <+ Sgn—k <k i=1
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(M=% k

= q B hegn a).

This completes the proof. O
3.1. Combinatorics of A-tableaux and convolution-type identities

Our aim is to demonstrate a simple combinatorics of A-tableaux. Through
this, convolution-type identities are obtained. To start, we first write (38) as

(39) A @) = YT wa(@),
PETA(k,n—Fk)
where
(40) wa(®) = [Twlle) = [Tla+rlellq, lel € {0,1,2,....k}.
ceP ced
The following theorem shows how an additive constant affects the recurrence

formula for S;"k (a):

Theorem 3.2. For nonnegative integers n and k, and complex numbers a and
r, the q-Rucinski- Voigt numbers satisfies the following identity:

n — a—ay n—jqn, *
(41) S;“’“(a) — Z <j>qa2(n k)+k( )(—[—az],) igr F(a*),
j=k

where a* = (a1,a1 +7,a1 + 2r,a1 + 3r,...) and a = a1 + ag for some numbers
a1 and as.

Proof. For ® € T4(k,n — k), we substitute j; = |¢| in (40). That is

n—k
(12) wa(®) = [ la+ iy
i=1
ji € {0,1,2,...,k}. Suppose a = ay + ag for some numbers a; and as. Then

with w*(j;) = [a1 + rji]q, we may write

n—=k
wa(P) = H laz + (a1 + 75i)],
et
= || ¢ (@) — [—a2ly)

i=1

|
>

n

4
= ¢ Y T ([arly) > [ ().

J1<q1<q2 < <@ <jn—k 1=1

~
I
o

Let Bg be the set of all A-tableaux corresponding to ® such that for each
1) € Bg, one of the following is true:

1 has no column whose weight is —[—az]g;

1 has one columns whose weight is —[—az]g;

1 has two columns whose weight is —[—as]q;
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1 has n — k columns whose weight is —[—as],-
Thus, we have
wa(®) = > wal¥).
YEBas

If there are ¢ columns in ¢ with weights other than —[—as],, then

L
wa(@) = [Tw (le) = g (= [~aalg)" ™ [ [ " (@),

cEY
where q1,q2,...,q € {j1,J2,---,in—k}. Hence, (39) may be rewritten into

(43) g G Resrk@y = ST N waw).

®ETA(kn—k) YEBa

It is known from [11] that for each ¢, there correspond (";k) tableaux with £

columns having weights w*(q;), ¢; € {j1, 2,3, -+ Jn—r}. Since TA(k,n — k)
contains (Z) tableaux, then for each ® € T4(k,n — k), there are (Z) (”;k) A-

tableaux corresponding to ®. But only (“f) of these tableaux are distinct.
Hence, every tableau ¢ with ¢ columns of weights other than —[—axs], appears

W: (ﬁik)

times in the collection (cf. [11]). It then follows that
n

—k
g () hagmk (a) = (zﬁk>qa2(”"“) (=[=asle)" ™ 3 [T w (e,

=0 YEB, cEY

where B, denotes the set of all tableaux 1 having ¢ columns of weights w*(j;).
Reindexing the two sums give

) O Fsphia) =Y (M) (el S [T e
=k M WEB,_p cE
Since Bj_j = T4 (k,j — k), then
(15) > [Twtteh =g B s,
’(,DGB]'—IC cEY
where a* = (a1,a1 + r,a1 + 2r,a; + 3r,...). Finally, combining this with (44)
gives the desired result. O

For Ay ={0,1,2,...,p} and Ay = {p+1,p+2,...,p+j+ 1}, let &y €
T4 (p,k—p) and &y € T42(j,n—k—j). We can generate an A-tableau ® with
n —p — j columns whose lengths are in A = {0,1,2,...,p+ j + 1} by joining
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the columns of the tableaux ®; and ®5. Hence, for ® € T4(p+j+1,n—p—j),
we can have

(46)
> Z{ S wa@) Y wA2<<1>2)}.
0

¢€TA(p+j+1,n—p—J) ®1€TAL(p,k—p) €T A2 (f,n—k—j)
Clearly, by (39),

(47) > wa(®) = g~ () e Dagn Lo+ ()
PETA(p+j+1,n—p—j)

and
(48) S wa, (1) =q ") reskea),
®1€T41 (p,k—p)
Also,
n—k—j
S wa(®) = 3 II la+rgil,
breT42(j,n—k—3) p+1<g1<g2<-<gn—k—;<ptj+l =1
n—k— ]

= Z r(p+14gi)lq

0<g1<g2<-<gn—r—;<j =1

n—k—j

k—
= >, II (@t rp+r)+rgl,

0<g1<g2<-<gn_—;<j =1

_ —7(3)—d(atrp+r) gn—k.,j (5
— (@) satrrin gnoti(g)

Here,a=(a+rp+r,a+rp+2r,a+rp+3r,...). Thus,
—T(p+§+1)—(p+j+1)aSZL+1,P+j+l(a)

49 n Ny ,
(49) Z q paSkm( ) - q_r(é)—](a"rTP""T)S;l—kJ (a).
k=0
Since

+7+1 . ] .
(50) r(p ; )+(p+y+1>a—r<§)—pa—r(‘;)—.7(a+rp+r)=a+rp,

then we get
(51) Spttrtitl(a) =3 " g"TPSEP(a) Sy (a).

k=0
Similarly, for By = {0,1,2,...,k} and Bs = {k,k + 1,k +2,...,n}, let ¢; €
TH (k,p — k) and ¢o € TP2(n — k,j —n + k). Then we can generate an A-
tableau ¢ with p + j — n columns whose lengths are in A = {0,1,2,...,n} by
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joining the columns of ¢; and ¢5. Hence, for ¢ € T4(n,p+ j —n),

(52)
S w@-3{ T aer S el
PETA (n,p+j—n) k=0 \¢1€T51(k,p—Fk) 26T B2 (n—k,j—n+k)
Again by (39),
(53) Y walg) = ¢ B masrtina)
PETA (n,p+j—n)
and
—r(*)—ka
(54) S ) =4 (2)=kagpk (),
¢1€TB1 (k,p—k)
Furthermore,
j—n+k
> wm(é) = > I la+rai,
$2€TB2(n—k,j—n+k) k<g1<g2<-+<gj_nir<n i=1
j—n+k

= Z H [a+r(k+gi)lq

0<g1<g2< - <gj—ntr<n—k i=1
j—n+k

= > II [(a+rk)+rgil,

0<g1<g2<<gjny<n—k i=1
(") —(n—k)(atrk in—k/a
=q ("3")—(n—k)( )Sé (a),
where a = (a+rk,a+rk+r,a+rk+2r,...). Thus,
(55)
qfr(g)fnasqp—i-j,n(a) _ Z qfr(g)fkasg,k(a) . qir(";’“),(nfk)(tr%rk)sg,n—k(é).
k=

[}

Finally, because

(56) r(Z) —i—na—r(];) —ka—r(n;k) — (n—k)(a+rk) =0,

we get
(57) SPHimt(a) =Y SPF(a)sin T a).
k=0

We formally state (51) and (57) in the next theorem.

Theorem 3.3. The g-Rucinski- Voigt numbers satisfy the following convolu-
tion-type identities:

(58) SytrtIta) = 3 TS (a)Sy M (a),
k=0
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+3 n s n—k
(59) Sy § :sp a)SimF (a),

wherea= (a+rp+r,a+rp+2r,a+rp+3r,...) anda= (a+rk,a+rk+
ria+rk+2r,...).

Remark 3.4. When r = m, a = r and ¢ — 1, we recover from this theorem the
results recently obtained by Xu and Zhou [33, Theorem 2.4].

4. Matrix decompositions

In 2015, Pan [30] obtained a remarkable matrix decomposition that provides
an explicit and nonrecursive manner of computing for the generalized Stirling
numbers of Hsu and Shiue [18]. That is, if Sq 5.4 = (S(n, k; o, 3,7)) is the ma-
trix whose entries are the generalized Stirling numbers S(n, k; «, 8,7) defined
by

(60) (ta)n =Y S(n, ks, B,7)(t = 718)k,

where (), = [/} (t — i), (t|a)o =1, then
(61) Sa.8y = Sa,0,0 - S0,0, - S0,8,0

(cf. [30, Theorem 7]). It is important to note that although the Ruciriski-Voigt
numbers are given by

(62) S(n,k;0,7,a) = S™*(a),
it is not wise to assume that
(63) 80,0 = S0,0,0 - S0,0,a * S0,r,0-

This is our justification in establishing the matrix decomposition of a matrix
whose entries are the numbers S™*(a).

First, we define 597 to be the matrix whose entries are the Rucinski-Voigt
numbers. For clarity, we will refer to this matrix as the Rucinski-Voigt matrix.
Also, we let

(64) Ve(z) = (1, z, (z|r)a, (x|r)s, . .., (x]7)n, - - .)T

be an infinite column vector. Note that the defining relation in (1) can be
rewritten into the form

(65) (x 4+ a)" ZS"k V(|-

Remark 4.1. The following identity is trivial:
(66) Vo(z +a) = §“”“Vr(x).



1070 BENT-USMAN, DIBAGULUN, MANGONTARUM, AND MONTERO

Using ag = (a,a,a,...) in place of a (the case when r = 0 in a) in (65) gives
S st = (o0 = 3 (ot
k=0 k=0

which implies that S™*(ag) = a”*(}). On the other hand, replacing = with
rx in (65) gives

n k—1
(67) ra” = Z Sk (a) H(rm —a—ir),
k=0 =0

which, in return, gives
(68) o = " rkTrsm R ag) ()

when a is replaced with a; = (0,r,2r,3r,...) (the case when a = 0 in a).
Comparing the coefficients of (z); with the horizontal generating functions of
S(n, k) (cf. [9]) gives S™*(a7) = r"~*S(n, k). It is, therefore, clear that

(69) SO = (r"=FS(n,k)) and S*° = (a"_k (Z)) ,

and because

(70) Vo(z) = S%"V,(2) and Vo(z + a) = S**Vy (),
then

(71) Vo(z + a) = 20507V, (z).
Comparing this with (66) yields

(72) (§ - §a70§0f) V,(z) =0,

where 0 is the infinite-dimensional zero matrix. Since x is an arbitrary real or
complex number and V,.(z) is a nonzero vector, then we obtain the following
theorem:

Theorem 4.2. The Rucinski-Voigt matrix SeT has the following decomposi-
tion:

(73) ga,r _ ga,O . §O,r.

We might as well extend this result to the g-Rucinski-Voigt numbers. We
start by expressing (19) as
(74) [z +aly =) SrF(a)[a|r)k,
k=0

where [z|r]; = Hi:ol [z —ir]y, [z]r]o = 1. Next, we define gg’r = (5r*(a)) to

q
be the g-Rucinski-Voigt matrix and let

T
(75) Vorlz] = (1, [z]g, [z|r]2, [z|7]s, .. ., [2]7]gs . )" -
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Remark 4.3. Clearly,
(76) Vyole +a] = 887V, [z].

Combining (74) with the defining relation of the g-analogue of the translated
Whitney numbers of the second kind [23, Equation 4] yields

ZS”ka7 Zw [n, klqlx|r]k.

Obviously, S7*(a7) = w(zr) [n, k]g. On the other hand, replace a with ag in (19)
and we obtain
S () — al* = [a]
k=0

= ([zly — lalq + [aly)"

3 (0t

Hence, S7*(ag) = ¢**(})[a]?~*. Moreover, we have

(77) Sor = (w(Qr) [n,k]q> and S0 = (q“k (Z) [a]g—’f) .

We are now ready for the next theorem.

Theorem 4.4. The q-Rucinski- Voigt matriz gg’r has the following decomposi-
tion:

Qa,r _ Qa,0 QO,r
(78) gor = §a0. 5o,

Proof. When a = 0, we have V, [z] = §27TVq’T[;E], while when r = 0, V,olz +
al = gg’OVq,o[x]. Hence,

(79) Voolw +a] = 30507V, [a].

Compare this with (76) and we have

(80) (Sa = 850807V, la]) = 0.

Since z is arbitrary and V, ,-[x] is nonzero, then we obtain the desired result. [

The results in Theorems 4.2 and 4.4 can be used to compute for the values
of the Rucinski-Voigt and the ¢g-Rucinski-Voigt numbers, respectively, for non-
negative integers n and k (k < n), and complex numbers ¢ and r in an explicit
but nonrecursive manner.
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