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AN ALTERNATIVE q-ANALOGUE OF THE

RUCIŃSKI-VOIGT NUMBERS
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and Charles B. Montero

Abstract. In this paper, we define an alternative q-analogue of the
Ruciński-Voigt numbers. We obtain fundamental combinatorial prop-

erties such as recurrence relations, generating functions and explicit for-

mulas which are shown to be q-deformations of similar properties for the
Ruciński-Voigt numbers, and are generalizations of the results obtained

by other authors. A combinatorial interpretation in the context of A-

tableaux is also given where convolution-type identities are consequently
obtained. Lastly, we establish the matrix decompositions of the Ruciński-

Voigt and the q-Ruciński-Voigt numbers.

1. Introduction

Ruciński and Voigt [31] defined the numbers Snk (a) as coefficients in the
expansion of the relation

(1) xn =

n∑
k=0

Snk (a)P a
k (x),

where a = (a, a+ r, a+ 2r, a+ 3r, . . .) and

(2) P a
k (x) = (x− a)(x− (a+ r))(x− (a+ 2r)) · · · (x− (a+ (k − 1)r)).

These numbers, often referred to as the “Ruciński-Voigt numbers” (see [14]),
are also known to satisfy the following combinatorial properties (cf. [14, 31]):

• triangular recurrence relation

(3) Sn+1
k (a) = Snk−1(a) + (kr + a)Snk (a),

• exponential generating function

(4)

∞∑
n=k

Snk (a)
xn

n!
=

1

rkk!
eax(erx − 1)k,
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• rational generating function

(5)

∞∑
n=0

Snk (a)xn =
xk∏k

j=0(1− (rj + a)x)
,

• explicit formulas

Snk (a) =
1

rkk!

k∑
j=0

(−1)k−j
(
k

j

)
(rj + a)n,(6)

Snk (a) =
∑

c0+c1+···+ck=n−k

k∏
j=0

(rj + a)cj .(7)

Evidently, the well-known Stirling numbers of the second kind [9, 32], denoted
by S(n, k), can be related to the Ruciński-Voigt numbers as follows:

(8) Snk (m) = S(n, k),

where m = (0, 1, 2, 3, . . . ) is the sequence of nonnegative integers. It can also
be shown that several known generalizations of S(n, k) are particular cases of
the Ruciński-Voigt numbers. To be precise, we have

(i) the r-Stirling numbers of the second kind
{
n+r
k+r

}
r

of Broder [5] are given

by

Snk (a1) =

{
n+ r

k + r

}
r

,

where a1 = (r, r + 1, r + 2, r + 3, . . .);
(ii) the Whitney numbers of the second kind of Dowling Lattices Wm(n, k)

of Benoumhani [3, 4] are given by

Snk (a2) = Wm(n, k),

where a2 = (1, 1 +m, 1 + 2m, 1 + 3m, . . .);
(iii) the noncentral Stirling numbers of the second kind Sa(n, k) of Koutras’

[21] (or Carlitz’ [7] weighted Stirling numbers of the second kind) are
given by

Snk (a3) = Sa(n, k),

where a3 = (−a,−a+ 1,−a+ 2,−a+ 3, . . .); and

(iv) the translated Whitney numbers of the second kind W̃(α)(n, k) first
defined by Belbachir and Bousbaa [2] and extensively studied in [25,27]
are given by

Snk (a4) = W̃(α)(n, k),

where a4 = (0, α, 2α, 3α, . . .).
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It is important to note that the Ruciński-Voigt numbers can be shown to
be equivalent to the numbers defined by Corcino [10], Mező [29], and Man-
gontarum et al. [24]. That is,

Snk (c) =

〈
n

k

〉
r,β

, Snk (d) = Wm,r(n, k), Snk (e) = W̃a,m(n, k),

where
〈
n
k

〉
r,β

, Wm,r(n, k) and W̃a,m(n, k) denote the (r, β)-Stirling numbers,

r-Whitney and noncentral Whitney numbers of the second kinds, respectively,
and c = (r, r + β, r + 2β, r + 3β, . . .), d = (r, r + m, r + 2m, r + 3m, . . .), and
e = (−a,−a+m,−a+ 2m,−a+ 3m, . . .).

The study of q-analogues of classical identities has been popular to a number
of mathematicians. This is, perhaps, due to its applications to diverse fields.
For the case of special sequences, it can be traced back to the works of Carlitz
[6] and Gould [17] on the q-analogues of the classical Stirling numbers, where
q-deformations of fundamental combinatorial properties were obtained. Cigler
[8], on the other hand, defined another q-analogue of the Stirling numbers
using the concept of set partitions. Motivated by this, a q-analogue of the r-
Stirling numbers was done by Corcino and Fernandez [12] using combinatorial
interpretations in terms of set partitions. The q-analogue of the translated
Whitney numbers was defined by Mangontarum et al. [23] by modification of
the horizontal generating function seen in [2]. Also, distinct q-analogues of the
multiparameter noncentral Stirling numbers were done by El-Desouky et al.
[16] and Corcino and Mangontarum [13].

In an earlier paper, Corcino and Montero [14] defined a q-analogue for the
Ruciński-Voigt numbers, denoted by σ[n, k]β,rq , via recurrence relation

(9) σ[n, k]β,rq = σ[n− 1, k − 1]β,rq + ([kβ]q + [r]q)σ[n− 1, k − 1]β,rq .

The said q-analogue is known to satisfy the explicit formula [14, Theorem 3.2]

(10) σ[n, k]β,rq =
1

[k]qβ ![β]kq

k∑
j=0

(−1)k−jqβ((k−j2 )−(k2))
(
k

j

)
qβ

([jβ]q + [r]q)
n,

where

(11)

(
n

k

)
q

=

k∏
j=1

qn−j+1 − 1

qj − 1
=

[n]q!

[k]q![n− k]q!

is the q-binomial coefficient, [n]q! =
∏n
i=1[i]q is the q-factorial of n and [n]q =

qn−1
q−1 is the q-integer (n and k are nonnegative integers). On the other hand, a q-

analogue of the r-Whitney numbers of the second kind, denoted byWm,r,q(n, k),
was introduced by Mangontarum and Katriel [26] as coefficients in

(12) (ma†a+ r)n =

n∑
k=0

mkWm,r,q(n, k)(a†)kak,
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where a† and a are the q-Boson operators [1] satisfying the commutation rela-
tion

(13) [a, a†]q ≡ aa† − qa†a = 1.

By comparing (10) with the explicit formula of Wm,r,q(n, k) [26, Theorem 16]
given by

(14) Wm,r,q(n, `) =
1

m`[`]q!

∑̀
k=0

(−1)`−kq(
`−k

2 )
(
`

k

)
q

(m[k]q + r)n,

it is obvious that the q-analogues σ[n, k]β,rq and Wm,r,q(n, k) are different from
one another. In fact, the former was motivated by Carlitz’ [6] definition of
the q-Stirling numbers of the second kind Sq[n, k] which is in terms of the
recurrence relation

(15) Sq[n, k] = Sq[n− 1, k − 1] + [k]qSq[n− 1, k],

while the latter was motivated by the horizontal generating function (see [19,
26])

(16) (a†a)n =

n∑
k=1

Sq[n, k](a†)kak.

Another q-analogue that is distinctly motivated is the q-noncentral Stirling
numbers of the second kind Sα[n, k]q defined by Corcino et al. [11] as follows:

(17) Sα[n, k]q = q(k−1)−αSα[n− 1, k − 1]q + [k − α]qSα[n− 1, k]q.

This type of q-analogue was said to be adapted in the work of Ehrenborg
[15]. In [11], some combinatorial properties were obtained. These include
convolution-type formulas which were derived using the combinatorics of the
A-tablaux. Lastly, the Hankel transform of the sum of the numbers Sa[n, k]q,
called q-noncentral Bell numbers, is presented in the same paper.

The main concern of this paper is to define an alternative q-analogue of the
Ruciński-Voigt numbers that is consistent with (1) (makes use of the sequence
a), not motivated by the works of Carlitz’ [6] and Katriel [19], and generalizes
identities such recurrence relations, explicit formulas and generating functions
obtained by Corcino et al. [11] and Mangontarum et al. [23]. A combinato-
rial interpetation of this q-analogue is presented and some formulas including
convolution-type identities are obtained. Finally, matrix decompositions of the
Ruciński-Voigt numbers and the newly-defined q-analogue are established.

2. Definition and combinatorial properties

Let

(18) Qk,aq (x) =

k−1∏
i=0

[x− (a+ ir)]q,
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where a = (a, a+ r, a+ 2r, a+ 3r, . . .). For x > 0, nonnegative integers n and
k, and complex numbers a and r, we define the q-Ruciński-Voigt numbers (an
alternative q-analogue of the Ruciński-Voigt numbers), denoted by Sn,kq (a), as

coefficients of Qk,aq (x) in the expansion of

(19) [x]nq =

n∑
k=0

Sn,kq (a)Qk,aq (x).

By convention, we set Sn,kq (a) = 0 for n < k or n, k < 0.

Theorem 2.1. The q-Ruciński-Voigt numbers Sn,kq (a) have the following re-
currence relations:

(i) triangular:

(20) Sn+1,k
q (a) = qa+r(k−1)Sn,k−1

q (a) + [a+ rk]qS
n,k
q (a),

(ii) vertical:

(21) Sn+1,k+1
q (a) = qa+rk

n−k∑
j=k

[a+ r(k + 1)]n−jq Sj,kq (a),

(iii) horizontal:

(22) Sn,kq (a) =

n−k∑
j=0

(−1)j
〈a|r〉q,k+j+1 S

n+1,k+j+1
q (a)

〈a|r〉q,k+1 q
(a+rk)(j+1)+r(j+1

2 )
,

where 〈a|r〉q,n =
∏n−1
i=0 [a+ ri]q.

Proof. Since

[x− a− rk]q = ([x]q − [a+ rk]q)
1

qa+rk
,

then
n+1∑
k=0

Sn+1,k
q (a)Qk,aq (x) = [x]nq [x]q

=

(
n∑
k=0

Sn,kq (a)Qk,aq (x)

)(
qa+rk[x− a− rk]q + [a+ rk]q

)
=

n+1∑
k=0

{
qa+r(k−1)Sn,k−1

q (a) + [a+ rk]qS
n,k
q (a)

}
Qk,aq (x).

The triangular recurrence relation is obtained by comparing the coefficients of
Qk,aq (x). The vertical recurrence relation can be derived by repeated application
of (20). That is,

Sn+1,k+1
q (a) = qa+rkSn,kq (a) + qa+rk[a+ r(k + 1)]qS

n−1,k
q (a)

+ qa+rk[a+ r(k + 1)]2qS
n−2,k
q (a)
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+ qa+rk[a+ r(k + 1)]3qS
n−3,k
q (a)

+ · · ·+ qa+rk[a+ r(k + 1)]n−kq Sk,kq (a)

= qa+rk
n−k∑
j=k

[a+ r(k + 1)]n−jq Sj,kq (a).

Finally, by evaluating the right-hand side of (22) using (20), we get

n−k∑
j=0

(−1)j
〈a|r〉q,k+j+1 S

n+1,k+j+1
q (a)

〈a|r〉q,k+1 q
(a+rk)(j+1)+r(j+1

2 )

=

n−k∑
j=0

(−1)j
〈a|r〉q,k+j+1 q

a+r(k+j)Sn,k+j
q (a)

〈a|r〉q,k+1 q
(a+rk)(j+1)+r(j+1

2 )

+

n−k∑
j=0

(−1)j
〈a|r〉q,k+j+1 S

n,k+j+1
q (a)

〈a|r〉q,k+1 q
(a+rk)(j+1)+r(j+1

2 )

=

n−k∑
j=1

(−1)j
〈a|r〉q,k+j+1 q

a+r(k+j)Sn,k+j
q (a)

〈a|r〉q,k+1 q
(a+rk)(j+1)+r(j+1

2 )

+ Sn,kq (a) +

n−k∑
j=1

(−1)j−1
〈a|r〉q,k+j+1 S

n,k+j
q (a)

〈a|r〉q,k+1 q
(a+rk)j+r(j2)

= Sn,kq (a).

These prove the theorem. �

Remark 2.2. The following observations are significant:

(i) From (20), we have

(23) Sn,0q (a) = [a]nq

and

(24) Sn,nq (a) = qr(
n
2)+an.

(ii) By taking the limits as q → 1, the results in Theorem 2.1 reduce back
to the triangular, vertical and horizontal recurrence relations for the
classical Ruciński-Voigt numbers presented in [14].

(iii) When a = −α and r = 1 in Theorem 2.1, we obtain the q-noncentral
Stirling numbers of the second kind [11, Definition 1 and Theorem 4].
That is,

(25) Sn,kq (a5) = Sα[n, k]q,

where a5 = (−α, 1− α, 2− α, 3− α, . . .).
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(iv) When a = 0 and r = α in Theorem 2.1, we obtain the q-analogue of the
translated Whitney numbers of the second kind, denoted by w2

(α)n, k]q
[23, Equations 30, 34 and 41]. That is,

(26) Sn,kq (a4) = w2
(α)n, k]q.

The defining relation in (19) may be expressed as

[a+ rk]q =

n∑
j=0

Sn,jq (a)

j−1∏
i=0

[kr − ir]q

=

k∑
j=0

(
k

j

)
qr

Sn,jq (a)
∏j−1
i=0 [kr − ir]q(
k
j

)
qr

 .

Applying the q-binomial inversion formula (see [9]) and since
∏k−1
i=0 [kr− ir]q =

[k]qr ![r]
k
q , we get

(27) Sn,kq (a) =
1

[k]qr ![r]kq

k∑
j=0

(−1)k−jqr(
k−j

2 )
(
k

j

)
qr

[a+ rj]nq .

Furthermore, let

fk(t) :=

∞∑
n=0

Sn,kq (a)
tn

[n]q!

be the exponential generating function of Sn,kq (a). Then multiplying both sides

of (27) by tn

[n]q !
and summing over n gives

(28) fk(t) =
1

[k]qr ![r]kq

k∑
j=0

(−1)k−jqr(
k−j

2 )
(
k

j

)
qr
eq

(
t [a+ jr]q

)
,

where eq

(
t [jr + a]q

)
is the q-exponential function defined by

(29) eq(x) =

∞∑
j=0

xj

[j]q!
.

Making use of the explicit formula of the known q-difference operator (see the
work of Kim and Son [20]) given by

(30) ∆k
qf(x) =

k∑
j=0

(−1)k−jq(
k−j

2 )
(
k

j

)
q

f(x+ j),

gives

(31) fk(t) =

{
∆k
q

(
eq (t[a+ rx]q)

[k]qr ![r]kq

)}
x=0

.

Hence, we have proved the results in the next theorem.
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Theorem 2.3. The q-Ruciński-Voigt numbers Sn,kq (a) satisfy the explicit for-
mula

(32) Sn,kq (a) =
1

[k]qr ![r]kq

k∑
j=0

(−1)k−jqr(
k−j

2 )
(
k

j

)
qr

[a+ rj]nq

and the exponential generating function

(33) fk(t) :=

∞∑
n=0

Sn,kq (a)
tn

[n]q!
=

{
∆k
q

(
eq (t[a+ rx]q)

[k]qr ![r]kq

)}
x=0

.

Remark 2.4. Observe that if we take the limits of (32) and (33) as q → 1, we
get

lim
q→1

Sn,kq (a) =
1

k!rk

k∑
j=0

(−1)k−j
(
k

j

)
(jr + a)n = Snk (a)

and

lim
q→1

fk(t) =
1

rkk!
eax(erx − 1)k =

∞∑
n=k

Snk (a)
xn

n!
,

respectively. The first limit implies that Sn,kq (a) is a proper q-analogue of the
numbers Snk (a). We note that the exponential generating function in (33) still
holds when t is replaced with [t]q. That is,

(34)

∞∑
n=0

Sn,kq (a)
[t]nq
[n]q!

=

{
∆k
q

(
eq ([t]q[a+ rx]q)

[k]qr ![r]kq

)}
x=0

.

And when a = −α and r = 1, (32) and (34) reduce to similar formulas for
the q-noncentral Stirling numbers of the second kind (cf. [11, Theorems 5 and
8]). Similarly, when a = 0 and r = α, (32) and (34) reduce to similar formulas
for the q-analogue of the translated Whitney numbers of the second kind (cf.
[23, Theorem 2.11]).

Theorem 2.5. The q-Ruciński-Voigt numbers Sn,kq (a) satisfy the rational gen-
erating function given by

(35) gk(t) :=
∞∑
n=k

Sn,kq (a)tn−k =
qr(

k
2)+ka∏k

j=0

(
1− t [a+ rj]q

) ,
and the explicit formula in complete symmetric polynomial form given by

(36) Sn,kq (a) = qr(
k
2)+ka

∑
0≤j1≤j2≤···≤jn−k≤k

n−k∏
i=1

[a+ rji]q .

Proof. We will prove the results by induction on k. Let gk(t) be the rational
generating function of Sn,kq (a). When k = 0, we have

g0(t) =

∞∑
n=0

Sn,0q (a)tn =

∞∑
n=0

[a]nq t
n =

1

1− [a]qt
.
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Furthermore, with k > 0 and (20) we obtain

gk(t) =

∞∑
n=k

qa+r(k−1)Sn−1,k−1
q (a)t(n−1)−(k−1)

+ t[a+ rk]q

∞∑
n=k

Sn−1,k
q (a)t(n−1)−k

= qa+r(k−1)gk−1(t) + t[a+ rk]qgk(t).

Hence,

gk(t) =
qa+r(k−1)

1− t[a+ rk]q
gk−1(t)

=
qr(

k
2)+ka∏k

j=0

(
1− t [a+ rj]q

) .
Now, we note that (36) yields S0,0

q (a) = 1, which is in agreement with the initial

value of Sn,kq (a). We suppose that (36) holds up to n for k = 0, 1, 2, . . . , n. Then
by (20),

Sn+1,k
q (a) = qa+r(k−1)

qr(k−1
2 )+a(k−1)

∑
0≤j1≤j2≤···≤jn−(k−1)≤k−1

n−(k−1)∏
i=1

[a+ rji]q


+ [a+ rk]q

qr(k2)+ka
∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏
i=1

[a+ rji]q


= qr(

k
2)+ka

∑
0≤j1≤j2≤···≤jn+1−k≤k

n+1−k∏
i=1

[a+ rji]q .

Finally, (36) yields Sn+1,n+1
q (a) = qr(

n+1
2 )+a(n+1) which is in agreement with

(24). This completes the proof. �

Remark 2.6. Apart from qr(
k
2)+ka, the right-hand side of (36) is in complete

symmetric polynomial form. We also observe that as q → 1, the generating
function and explicit formula obtained in the previous theorem reduce back to
similar identities for the classical Ruciński-Voigt numbers. Now, if we replace
t with [t]q in (35), we get

(37)

∞∑
n=k

Sn,kq (a)[t]n−kq =
qr(

k
2)+ka∏k

j=0

(
1− [t]q [a+ rj]q

) .
The results of Corcino et al. [11, Theorems 10 and 11] can be obtained from
this when a = −α and r = 1 in (37) and (36), while the explicit formula for
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the q-analogue of Mangontarum et al. [23, Equation 57] is the case when a = 0
and r = α in (36).

3. In the context of A-tableaux

A 0-1 tableau is a pair ϕ = (λ, f), where λ = (λ1 ≥ λ2 ≥ · · · ≥ λk) is a
partition of an integer m and f = (fij)1≤j≤λi is a “filling” of the cells of the
corresponding Ferrers diagram of shape λ with 0’s and 1’s in such a way that
there is exactly one 1 in each column. In line with this, an A-tableau is defined
to be a list Φ of column c of a Ferrers diagram of λ (by decreasing order of
length) such that the length |c| is part of a sequence A = (ai)i≥0, a strictly in-
creasing sequence of nonnegative integers. These tableaux were first introduced
in the paper of de Médicis and Leroux [28]. Combinatorial interpretations of
the Stirling numbers and their different extensions and generalizations can be
seen in the same paper and in subsequent works of others (see [11,14,22,23]).

Let ω be a function from the set of nonnegative integers N to a ring K,
and suppose that Φ is an A-tableau with r columns of length |c|. It is known
that Φ might contain a finite number of columns whose lengths are zero since
0 ∈ A and if ω(0) 6= 0 (cf. [28]). Let TA(x, y) be the set of all A-tableaux
with A = {0, 1, 2, 3, . . . , x} and exactly y columns, some of which are possibly
of length zero. The next theorem expresses the q-Ruciński-Voigt numbers in
terms of a sum of weights of A-tableaux.

Theorem 3.1. Let ω : N −→ K be a function from the set of positive integers
N to a ring K (column weights according to length) defined by ω(|c|) = [a +
r|c|]q, where a and r are complex numbers, and |c| is the length of column c of
an A-tableau in TA(k, n− k). Then

(38) q−r(
k
2)−kaSn,kq (a) =

∑
Φ∈TA(k,n−k)

∏
c∈Φ

ω(|c|),

where a = (a, a+ r, a+ 2r, a+ 3r, . . .).

Proof. Let Φ in TA(k, n−k). This implies that Φ has exactly n−k columns, say
c1, c2, . . . , cn−k, whose lengths are j1, j2, . . . , jn−k, respectively. Moreover, for
each column ci ∈ Φ, i = 1, 2, . . . , n−k, we have |ci| = ji and ω(|ci|) = [a+rji]q.
Hence, we get ∏

c∈Φ

ω(|c|) =

n−k∏
i=1

ω(|ci|) =

n−k∏
i=1

[a+ rji]q.

Since Φ ∈ TA(k, n− k), then∑
Φ∈TA(k,n−k)

∏
c∈Φ

ω(|c|) =
∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏
i=1

ω(|ci|)

=
∑

0≤j1≤j2≤···≤jn−k≤k

n−k∏
i=1

[a+ rji]q.
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= q−r(
k
2)−kaSn,kq (a).

This completes the proof. �

3.1. Combinatorics of A-tableaux and convolution-type identities

Our aim is to demonstrate a simple combinatorics of A-tableaux. Through
this, convolution-type identities are obtained. To start, we first write (38) as

(39) q−r(
k
2)−kaSn,kq (a) =

∑
Φ∈TA(k,n−k)

ωA(Φ),

where

(40) ωA(Φ) =
∏
c∈Φ

ω(|c|) =
∏
c∈Φ

[a+ r|c|]q, |c| ∈ {0, 1, 2, . . . , k}.

The following theorem shows how an additive constant affects the recurrence
formula for Sn,kq (a):

Theorem 3.2. For nonnegative integers n and k, and complex numbers a and
r, the q-Ruciński-Voigt numbers satisfies the following identity:

(41) Sn,kq (a) =

n∑
j=k

(
n

j

)
qa2(n−k)+k(a−a1)(−[−a2]q)

n−jSn,kq (a∗),

where a∗ = (a1, a1 + r, a1 + 2r, a1 + 3r, . . .) and a = a1 + a2 for some numbers
a1 and a2.

Proof. For Φ ∈ TA(k, n− k), we substitute ji = |c| in (40). That is

(42) ωA(Φ) =

n−k∏
i=1

[a+ rji]q,

ji ∈ {0, 1, 2, . . . , k}. Suppose a = a1 + a2 for some numbers a1 and a2. Then
with ω∗(ji) = [a1 + rji]q, we may write

ωA(Φ) =

n−k∏
i=1

[a2 + (a1 + rji)]q

=

n−k∏
i=1

qa2 (ω∗(ji)− [−a2]q)

= qa2(n−k)
n−k∑
`=0

(−[−a2]q)
n−k−` ∑

j1≤q1≤q2≤···≤ql≤jn−k

∏̀
i=1

ω∗(qi).

Let BΦ be the set of all A-tableaux corresponding to Φ such that for each
ψ ∈ BΦ, one of the following is true:
ψ has no column whose weight is −[−a2]q;
ψ has one columns whose weight is −[−a2]q;
ψ has two columns whose weight is −[−a2]q;
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...
ψ has n− k columns whose weight is −[−a2]q.
Thus, we have

ωA(Φ) =
∑
ψ∈BΦ

ωA(ψ).

If there are ` columns in ψ with weights other than −[−a2]q, then

ωA(ψ) =
∏
c∈ψ

ω∗(|c|) = qa2(n−k) (−[−a2]q)
n−k−` ∏̀

i=1

ω∗(qi),

where q1, q2, . . . , qr ∈ {j1, j2, . . . , jn−k}. Hence, (39) may be rewritten into

(43) q−r(
k
2)−kaSn,kq (a) =

∑
Φ∈TA(k,n−k)

∑
ψ∈BΦ

ωA(ψ).

It is known from [11] that for each `, there correspond
(
n−k
`

)
tableaux with `

columns having weights ω∗(qi), qi ∈ {j1, j2, j3, . . . , jn−k}. Since TA(k, n − k)

contains
(
n
k

)
tableaux, then for each Φ ∈ TA(k, n − k), there are

(
n
k

)(
n−k
`

)
A-

tableaux corresponding to Φ. But only
(
`+k
`

)
of these tableaux are distinct.

Hence, every tableau ψ with ` columns of weights other than −[−a2]q appears(
n
k

)(
n−k
`

)(
`+k
`

) =

(
n

`+ k

)
times in the collection (cf. [11]). It then follows that

q−r(
k
2)−kaSn,kq (a) =

n−k∑
`=0

(
n

`+ k

)
qa2(n−k) (−[−a2]q)

n−k−` ∑
ψ∈B̄`

∏
c∈ψ

ω∗(|c|),

where B̄` denotes the set of all tableaux ψ having ` columns of weights w∗(ji).
Reindexing the two sums give

(44) q−r(
k
2)−kaSn,kq (a) =

n∑
j=k

(
n

j

)
qa2(n−k) (−[−a2]q)

n−j ∑
ψ∈B̄j−k

∏
c∈ψ

ω∗(|c|).

Since B̄j−k = TA(k, j − k), then

(45)
∑

ψ∈B̄j−k

∏
c∈ψ

ω∗(|c|) = q−r(
k
2)−ka1Sn,kq (a∗),

where a∗ = (a1, a1 + r, a1 + 2r, a1 + 3r, . . .). Finally, combining this with (44)
gives the desired result. �

For A1 = {0, 1, 2, . . . , p} and A2 = {p + 1, p + 2, . . . , p + j + 1}, let Φ1 ∈
TA1(p, k−p) and Φ2 ∈ TA2(j, n−k−j). We can generate an A-tableau Φ with
n − p − j columns whose lengths are in A = {0, 1, 2, . . . , p + j + 1} by joining
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the columns of the tableaux Φ1 and Φ2. Hence, for Φ ∈ TA(p+j+1, n−p−j),
we can have
(46) ∑
Φ∈TA(p+j+1,n−p−j)

ωA(Φ) =

n∑
k=0

{ ∑
Φ1∈TA1 (p,k−p)

ωA1
(Φ1) ·

∑
Φ2∈TA2 (j,n−k−j)

ωA2
(Φ2)

}
.

Clearly, by (39),

(47)
∑

Φ∈TA(p+j+1,n−p−j)

ωA(Φ) = q−r(
p+j+1

2 )−(p+j+1)aSn+1,p+j+1
q (a)

and

(48)
∑

Φ1∈TA1 (p,k−p)

ωA1
(Φ1) = q−r(

p
2)−paSk,pq (a).

Also, ∑
Φ2∈TA2 (j,n−k−j)

ωA2(Φ2) =
∑

p+1≤g1≤g2≤···≤gn−k−j≤p+j+1

n−k−j∏
i=1

[a+ rgi]q

=
∑

0≤g1≤g2≤···≤gn−k−j≤j

n−k−j∏
i=1

[a+ r(p+ 1 + gi)]q

=
∑

0≤g1≤g2≤···≤gn−k−j≤j

n−k−j∏
i=1

[(a+ rp+ r) + rgi]q

= q−r(
j
2)−j(a+rp+r)Sn−k,jq (ā).

Here, ā = (a+ rp+ r, a+ rp+ 2r, a+ rp+ 3r, . . .). Thus,

(49)

q−r(
p+j+1

2 )−(p+j+1)aSn+1,p+j+1
q (a)

=

n∑
k=0

q−r(
p
2)−paSk,pq (a) · q−r(

j
2)−j(a+rp+r)Sn−k,jq (ā).

Since

(50) r

(
p+ j + 1

2

)
+(p+ j+1)a−r

(
p

2

)
−pa−r

(
j

2

)
− j(a+rp+r) = a+rp,

then we get

(51) Sn+1,p+j+1
q (a) =

n∑
k=0

qa+rpSk,pq (a)Sn−k,jq (ā).

Similarly, for B1 = {0, 1, 2, . . . , k} and B2 = {k, k + 1, k + 2, . . . , n}, let φ1 ∈
TB1(k, p − k) and φ2 ∈ TB2(n − k, j − n + k). Then we can generate an A-
tableau φ with p+ j − n columns whose lengths are in A = {0, 1, 2, . . . , n} by
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joining the columns of φ1 and φ2. Hence, for φ ∈ TA(n, p+ j − n),
(52) ∑
φ∈TA(n,p+j−n)

ωA(φ) =

n∑
k=0

{ ∑
φ1∈TB1 (k,p−k)

ωB1
(φ1) ·

∑
φ2∈TB2 (n−k,j−n+k)

ωB2
(φ2)

}
.

Again by (39),

(53)
∑

φ∈TA(n,p+j−n)

ωA(φ) = q−r(
n
2)−naSp+j,nq (a)

and

(54)
∑

φ1∈TB1 (k,p−k)

ωB1
(φ1) = q−r(

k
2)−kaSp,kq (a).

Furthermore,∑
φ2∈TB2 (n−k,j−n+k)

ωB2
(φ2) =

∑
k≤g1≤g2≤···≤gj−n+k≤n

j−n+k∏
i=1

[a+ rgi]q

=
∑

0≤g1≤g2≤···≤gj−n+k≤n−k

j−n+k∏
i=1

[a+ r(k + gi)]q

=
∑

0≤g1≤g2≤···≤gj−n+k≤n−k

j−n+k∏
i=1

[(a+ rk) + rgi]q

= q−r(
n−k

2 )−(n−k)(a+rk)Sj,n−kq (â),

where â = (a+ rk, a+ rk + r, a+ rk + 2r, . . .). Thus,
(55)

q−r(
n
2)−naSp+j,nq (a) =

n∑
k=0

q−r(
k
2)−kaSp,kq (a) · q−r(

n−k
2 )−(n−k)(a+rk)Sj,n−kq (â).

Finally, because

(56) r

(
n

2

)
+ na− r

(
k

2

)
− ka− r

(
n− k

2

)
− (n− k)(a+ rk) = 0,

we get

(57) Sp+j,nq (a) =

n∑
k=0

Sp,kq (a)Sj,n−kq (â).

We formally state (51) and (57) in the next theorem.

Theorem 3.3. The q-Ruciński-Voigt numbers satisfy the following convolu-
tion-type identities:

(58) Sn+1,p+j+1
q (a) =

n∑
k=0

qa+rpSk,pq (a)Sn−k,jq (ā),
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(59) Sp+j,nq (a) =

n∑
k=0

Sp,kq (a)Sj,n−kq (â),

where ā = (a + rp + r, a + rp + 2r, a + rp + 3r, . . .) and â = (a + rk, a + rk +
r, a+ rk + 2r, . . .).

Remark 3.4. When r = m, a = r and q → 1, we recover from this theorem the
results recently obtained by Xu and Zhou [33, Theorem 2.4].

4. Matrix decompositions

In 2015, Pan [30] obtained a remarkable matrix decomposition that provides
an explicit and nonrecursive manner of computing for the generalized Stirling
numbers of Hsu and Shiue [18]. That is, if Sα,β,γ = (S(n, k;α, β, γ)) is the ma-
trix whose entries are the generalized Stirling numbers S(n, k;α, β, γ) defined
by

(60) (t|α)n =

n∑
k=0

S(n, k;α, β, γ)(t− γ|β)k,

where (t|α)n =
∏n−1
i=1 (t− iα), (t|α)0 = 1, then

(61) Sα,β,γ = Sα,0,0 · S0,0,γ · S0,β,0

(cf. [30, Theorem 7]). It is important to note that although the Ruciński-Voigt
numbers are given by

(62) S(n, k; 0, r, a) = Sn,k(a),

it is not wise to assume that

(63) S0,r,a = S0,0,0 · S0,0,a · S0,r,0.

This is our justification in establishing the matrix decomposition of a matrix
whose entries are the numbers Sn,k(a).

First, we define S̃a,r to be the matrix whose entries are the Ruciński-Voigt
numbers. For clarity, we will refer to this matrix as the Ruciński-Voigt matrix.
Also, we let

(64) Vr(x) = (1, x, (x|r)2, (x|r)3, . . . , (x|r)n, . . .)T

be an infinite column vector. Note that the defining relation in (1) can be
rewritten into the form

(65) (x+ a)n =

n∑
k=0

Sn,k(a)(x|r)k.

Remark 4.1. The following identity is trivial:

(66) V0(x+ a) = S̃a,rVr(x).
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Using a6 = (a, a, a, . . .) in place of a (the case when r = 0 in a) in (65) gives
n∑
k=0

Sn,k(a6)xk = (x+ a)n =

n∑
k=0

(
n

k

)
an−kxk,

which implies that Sn,k(a6) = an−k
(
n
k

)
. On the other hand, replacing x with

rx in (65) gives

(67) rnxn =

n∑
k=0

Sn,k(a)

k−1∏
i=0

(rx− a− ir),

which, in return, gives

(68) xn =

n∑
k=0

rk−nSn,k(a7)(x)k

when a is replaced with a7 = (0, r, 2r, 3r, . . .) (the case when a = 0 in a).
Comparing the coefficients of (x)k with the horizontal generating functions of
S(n, k) (cf. [9]) gives Sn,k(a7) = rn−kS(n, k). It is, therefore, clear that

(69) S̃0,r =
(
rn−kS(n, k)

)
and S̃a,0 =

(
an−k

(
n

k

))
,

and because

(70) V0(x) = S̃0,rVr(x) and V0(x+ a) = S̃a,0V0(x),

then

(71) V0(x+ a) = S̃a,0S̃0,rVr(x).

Comparing this with (66) yields

(72)
(
S̃a,r − S̃a,0S̃0,r

)
Vr(x) = 0,

where 0 is the infinite-dimensional zero matrix. Since x is an arbitrary real or
complex number and Vr(x) is a nonzero vector, then we obtain the following
theorem:

Theorem 4.2. The Ruciński-Voigt matrix S̃a,r has the following decomposi-
tion:

(73) S̃a,r = S̃a,0 · S̃0,r.

We might as well extend this result to the q-Ruciński-Voigt numbers. We
start by expressing (19) as

(74) [x+ a]nq =

n∑
k=0

Sn,kq (a)[x|r]k,

where [x|r]k =
∏k−1
i=0 [x− ir]q, [x|r]0 = 1. Next, we define S̃a,rq =

(
Sn,kq (a)

)
to

be the q-Ruciński-Voigt matrix and let

(75) Vq,r[x] = (1, [x]q, [x|r]2, [x|r]3, . . . , [x|r]q, . . .)T .
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Remark 4.3. Clearly,

(76) Vq,0[x+ a] = S̃a,rq Vq,r[x].

Combining (74) with the defining relation of the q-analogue of the translated
Whitney numbers of the second kind [23, Equation 4] yields

n∑
k=0

Sn,kq (a7)[x|r]k = [x]nq =

n∑
k=0

w2
(r)[n, k]q[x|r]k.

Obviously, Sn,kq (a7) = w2
(r)[n, k]q. On the other hand, replace a with a6 in (19)

and we obtain

n∑
k=0

Sn,kq (a6)[x− a]k = [x]nq

= ([x]q − [a]q + [a]q)
n

=

n∑
k=0

(
n

k

)
[a]n−kq qak[x− a]k.

Hence, Sn,kq (a6) = qak
(
n
k

)
[a]n−kq . Moreover, we have

(77) S̃0,r
q =

(
w2

(r)[n, k]q

)
and S̃a,0q =

(
qak
(
n

k

)
[a]n−kq

)
.

We are now ready for the next theorem.

Theorem 4.4. The q-Ruciński-Voigt matrix S̃a,rq has the following decomposi-
tion:

(78) S̃a,rq = S̃a,0q · S̃0,r
q .

Proof. When a = 0, we have Vq,0[x] = S̃0,r
q Vq,r[x], while when r = 0, Vq,0[x +

a] = S̃a,0q Vq,0[x]. Hence,

(79) Vq,0[x+ a] = S̃a,0q S̃0,r
q Vq,r[x].

Compare this with (76) and we have

(80)
(
S̃a,rq − S̃a,0q S̃0,r

q Vq,r[x]
)

= 0.

Since x is arbitrary and Vq,r[x] is nonzero, then we obtain the desired result. �

The results in Theorems 4.2 and 4.4 can be used to compute for the values
of the Ruciński-Voigt and the q-Ruciński-Voigt numbers, respectively, for non-
negative integers n and k (k ≤ n), and complex numbers a and r in an explicit
but nonrecursive manner.
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