AN ALTERNATIVE q-ANALOGUE OF THE RUCIŃSKI-VOIGT NUMBERS

Wardah M. Bent-Usman, Amerah M. Dibagulun, Mahid M. Mangontarum, and Charles B. Montero

Abstract

In this paper, we define an alternative q-analogue of the Ruciński-Voigt numbers. We obtain fundamental combinatorial properties such as recurrence relations, generating functions and explicit formulas which are shown to be q-deformations of similar properties for the Ruciński-Voigt numbers, and are generalizations of the results obtained by other authors. A combinatorial interpretation in the context of A tableaux is also given where convolution-type identities are consequently obtained. Lastly, we establish the matrix decompositions of the RucińskiVoigt and the q-Ruciński-Voigt numbers.

1. Introduction

Ruciński and Voigt [31] defined the numbers $S_{k}^{n}(\mathbf{a})$ as coefficients in the expansion of the relation

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} S_{k}^{n}(\mathbf{a}) P_{k}^{\mathbf{a}}(x), \tag{1}
\end{equation*}
$$

where $\mathbf{a}=(a, a+r, a+2 r, a+3 r, \ldots)$ and

$$
\begin{equation*}
P_{k}^{\mathbf{a}}(x)=(x-a)(x-(a+r))(x-(a+2 r)) \cdots(x-(a+(k-1) r)) . \tag{2}
\end{equation*}
$$

These numbers, often referred to as the "Rucinski-Voigt numbers" (see [14]), are also known to satisfy the following combinatorial properties (cf. [14, 31]):

- triangular recurrence relation

$$
\begin{equation*}
S_{k}^{n+1}(\mathbf{a})=S_{k-1}^{n}(\mathbf{a})+(k r+a) S_{k}^{n}(\mathbf{a}), \tag{3}
\end{equation*}
$$

- exponential generating function

$$
\begin{equation*}
\sum_{n=k}^{\infty} S_{k}^{n}(\mathbf{a}) \frac{x^{n}}{n!}=\frac{1}{r^{k} k!} e^{a x}\left(e^{r x}-1\right)^{k}, \tag{4}
\end{equation*}
$$

Received September 10, 2017; Accepted January 10, 2018.
2010 Mathematics Subject Classification. Primary 11B83, 11B73, 05A30, 15B36.
Key words and phrases. Stirling number, Ruciński-Voigt number, Whitney number, q analogue, A-tabluea, matrix decomposition.

This research did not receive any financial assistance from any funding agency.

- rational generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{k}^{n}(\mathbf{a}) x^{n}=\frac{x^{k}}{\prod_{j=0}^{k}(1-(r j+a) x)} \tag{5}
\end{equation*}
$$

- explicit formulas

$$
\begin{align*}
& S_{k}^{n}(\mathbf{a})=\frac{1}{r^{k} k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}(r j+a)^{n}, \tag{6}\\
& S_{k}^{n}(\mathbf{a})=\sum_{c_{0}+c_{1}+\cdots+c_{k}=n-k} \prod_{j=0}^{k}(r j+a)^{c_{j}} \tag{7}
\end{align*}
$$

Evidently, the well-known Stirling numbers of the second kind [9, 32], denoted by $S(n, k)$, can be related to the Ruciński-Voigt numbers as follows:

$$
\begin{equation*}
S_{k}^{n}(\mathbf{m})=S(n, k) \tag{8}
\end{equation*}
$$

where $\mathbf{m}=(0,1,2,3, \ldots)$ is the sequence of nonnegative integers. It can also be shown that several known generalizations of $S(n, k)$ are particular cases of the Ruciński-Voigt numbers. To be precise, we have
(i) the r-Stirling numbers of the second kind $\left\{\begin{array}{l}n+r \\ k+r\end{array}\right\}_{r}$ of Broder [5] are given by

$$
S_{k}^{n}\left(\mathbf{a}_{1}\right)=\left\{\begin{array}{l}
n+r \\
k+r
\end{array}\right\}_{r}
$$

where $\mathbf{a}_{1}=(r, r+1, r+2, r+3, \ldots)$;
(ii) the Whitney numbers of the second kind of Dowling Lattices $W_{m}(n, k)$ of Benoumhani [3,4] are given by

$$
S_{k}^{n}\left(\mathbf{a}_{2}\right)=W_{m}(n, k),
$$

where $\mathbf{a}_{2}=(1,1+m, 1+2 m, 1+3 m, \ldots)$;
(iii) the noncentral Stirling numbers of the second kind $S_{a}(n, k)$ of Koutras' [21] (or Carlitz' [7] weighted Stirling numbers of the second kind) are given by

$$
S_{k}^{n}\left(\mathbf{a}_{3}\right)=S_{a}(n, k),
$$

where $\mathbf{a}_{3}=(-a,-a+1,-a+2,-a+3, \ldots)$; and
(iv) the translated Whitney numbers of the second kind $\widetilde{W}_{(\alpha)}(n, k)$ first defined by Belbachir and Bousbaa [2] and extensively studied in [25,27] are given by

$$
S_{k}^{n}\left(\mathbf{a}_{4}\right)=\widetilde{W}_{(\alpha)}(n, k),
$$

where $\mathbf{a}_{4}=(0, \alpha, 2 \alpha, 3 \alpha, \ldots)$.

It is important to note that the Ruciński-Voigt numbers can be shown to be equivalent to the numbers defined by Corcino [10], Mező [29], and Mangontarum et al. [24]. That is,

$$
S_{k}^{n}(\mathbf{c})=\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{r, \beta}, S_{k}^{n}(\mathbf{d})=W_{m, r}(n, k), S_{k}^{n}(\mathbf{e})=\widetilde{W}_{a, m}(n, k),
$$

where $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{r, \beta}, W_{m, r}(n, k)$ and $\widetilde{W}_{a, m}(n, k)$ denote the (r, β)-Stirling numbers, r-Whitney and noncentral Whitney numbers of the second kinds, respectively, and $\mathbf{c}=(r, r+\beta, r+2 \beta, r+3 \beta, \ldots), \mathbf{d}=(r, r+m, r+2 m, r+3 m, \ldots)$, and $\mathbf{e}=(-a,-a+m,-a+2 m,-a+3 m, \ldots)$.

The study of q-analogues of classical identities has been popular to a number of mathematicians. This is, perhaps, due to its applications to diverse fields. For the case of special sequences, it can be traced back to the works of Carlitz [6] and Gould [17] on the q-analogues of the classical Stirling numbers, where q-deformations of fundamental combinatorial properties were obtained. Cigler [8], on the other hand, defined another q-analogue of the Stirling numbers using the concept of set partitions. Motivated by this, a q-analogue of the r Stirling numbers was done by Corcino and Fernandez [12] using combinatorial interpretations in terms of set partitions. The q-analogue of the translated Whitney numbers was defined by Mangontarum et al. [23] by modification of the horizontal generating function seen in [2]. Also, distinct q-analogues of the multiparameter noncentral Stirling numbers were done by El-Desouky et al. [16] and Corcino and Mangontarum [13].

In an earlier paper, Corcino and Montero [14] defined a q-analogue for the Ruciński-Voigt numbers, denoted by $\sigma[n, k]_{q}^{\beta, r}$, via recurrence relation

$$
\begin{equation*}
\sigma[n, k]_{q}^{\beta, r}=\sigma[n-1, k-1]_{q}^{\beta, r}+\left([k \beta]_{q}+[r]_{q}\right) \sigma[n-1, k-1]_{q}^{\beta, r} . \tag{9}
\end{equation*}
$$

The said q-analogue is known to satisfy the explicit formula [14, Theorem 3.2]

$$
\begin{equation*}
\sigma[n, k]_{q}^{\beta, r}=\frac{1}{[k]_{q^{\beta}}![\beta]_{q}^{k}} \sum_{j=0}^{k}(-1)^{k-j} q^{\beta\left(\binom{k-j}{2}-\binom{k}{2}\right)}\binom{k}{j}_{q^{\beta}}\left([j \beta]_{q}+[r]_{q}\right)^{n}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\binom{n}{k}_{q}=\prod_{j=1}^{k} \frac{q^{n-j+1}-1}{q^{j}-1}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} \tag{11}
\end{equation*}
$$

is the q-binomial coefficient, $[n]_{q}!=\prod_{i=1}^{n}[i]_{q}$ is the q-factorial of n and $[n]_{q}=$ $\frac{q^{n}-1}{q-1}$ is the q-integer (n and k are nonnegative integers). On the other hand, a q analogue of the r-Whitney numbers of the second kind, denoted by $W_{m, r, q}(n, k)$, was introduced by Mangontarum and Katriel [26] as coefficients in

$$
\begin{equation*}
\left(m a^{\dagger} a+r\right)^{n}=\sum_{k=0}^{n} m^{k} W_{m, r, q}(n, k)\left(a^{\dagger}\right)^{k} a^{k} \tag{12}
\end{equation*}
$$

where a^{\dagger} and a are the q-Boson operators [1] satisfying the commutation relation

$$
\begin{equation*}
\left[a, a^{\dagger}\right]_{q} \equiv a a^{\dagger}-q a^{\dagger} a=1 \tag{13}
\end{equation*}
$$

By comparing (10) with the explicit formula of $W_{m, r, q}(n, k)$ [26, Theorem 16] given by

$$
\begin{equation*}
W_{m, r, q}(n, \ell)=\frac{1}{m^{\ell}[\ell]_{q}!} \sum_{k=0}^{\ell}(-1)^{\ell-k} q^{\left(e_{2}^{\ell-k}\right)}\binom{\ell}{k}_{q}\left(m[k]_{q}+r\right)^{n} \tag{14}
\end{equation*}
$$

it is obvious that the q-analogues $\sigma[n, k]_{q}^{\beta, r}$ and $W_{m, r, q}(n, k)$ are different from one another. In fact, the former was motivated by Carlitz' [6] definition of the q-Stirling numbers of the second kind $S_{q}[n, k]$ which is in terms of the recurrence relation

$$
\begin{equation*}
S_{q}[n, k]=S_{q}[n-1, k-1]+[k]_{q} S_{q}[n-1, k], \tag{15}
\end{equation*}
$$

while the latter was motivated by the horizontal generating function (see [19, 26])

$$
\begin{equation*}
\left(a^{\dagger} a\right)^{n}=\sum_{k=1}^{n} S_{q}[n, k]\left(a^{\dagger}\right)^{k} a^{k} \tag{16}
\end{equation*}
$$

Another q-analogue that is distinctly motivated is the q-noncentral Stirling numbers of the second kind $S_{\alpha}[n, k]_{q}$ defined by Corcino et al. [11] as follows:

$$
\begin{equation*}
S_{\alpha}[n, k]_{q}=q^{(k-1)-\alpha} S_{\alpha}[n-1, k-1]_{q}+[k-\alpha]_{q} S_{\alpha}[n-1, k]_{q} . \tag{17}
\end{equation*}
$$

This type of q-analogue was said to be adapted in the work of Ehrenborg [15]. In [11], some combinatorial properties were obtained. These include convolution-type formulas which were derived using the combinatorics of the A-tablaux. Lastly, the Hankel transform of the sum of the numbers $S_{a}[n, k]_{q}$, called q-noncentral Bell numbers, is presented in the same paper.

The main concern of this paper is to define an alternative q-analogue of the Ruciński-Voigt numbers that is consistent with (1) (makes use of the sequence a), not motivated by the works of Carlitz' [6] and Katriel [19], and generalizes identities such recurrence relations, explicit formulas and generating functions obtained by Corcino et al. [11] and Mangontarum et al. [23]. A combinatorial interpetation of this q-analogue is presented and some formulas including convolution-type identities are obtained. Finally, matrix decompositions of the Ruciński-Voigt numbers and the newly-defined q-analogue are established.

2. Definition and combinatorial properties

Let

$$
\begin{equation*}
Q_{q}^{k, \mathbf{a}}(x)=\prod_{i=0}^{k-1}[x-(a+i r)]_{q} \tag{18}
\end{equation*}
$$

where $\mathbf{a}=(a, a+r, a+2 r, a+3 r, \ldots)$. For $x>0$, nonnegative integers n and k, and complex numbers a and r, we define the q-Ruciński-Voigt numbers (an alternative q-analogue of the Ruciński-Voigt numbers), denoted by $S_{q}^{n, k}(\mathbf{a})$, as coefficients of $Q_{q}^{k, \mathbf{a}}(x)$ in the expansion of

$$
\begin{equation*}
[x]_{q}^{n}=\sum_{k=0}^{n} S_{q}^{n, k}(\mathbf{a}) Q_{q}^{k, \mathbf{a}}(x) \tag{19}
\end{equation*}
$$

By convention, we set $S_{q}^{n, k}(\mathbf{a})=0$ for $n<k$ or $n, k<0$.
Theorem 2.1. The q-Ruciński-Voigt numbers $S_{q}^{n, k}(\mathbf{a})$ have the following recurrence relations:
(i) triangular:

$$
\begin{equation*}
S_{q}^{n+1, k}(\mathbf{a})=q^{a+r(k-1)} S_{q}^{n, k-1}(\mathbf{a})+[a+r k]_{q} S_{q}^{n, k}(\mathbf{a}), \tag{20}
\end{equation*}
$$

(ii) vertical:

$$
\begin{equation*}
S_{q}^{n+1, k+1}(\mathbf{a})=q^{a+r k} \sum_{j=k}^{n-k}[a+r(k+1)]_{q}^{n-j} S_{q}^{j, k}(\mathbf{a}), \tag{21}
\end{equation*}
$$

(iii) horizontal:

$$
\begin{equation*}
S_{q}^{n, k}(\mathbf{a})=\sum_{j=0}^{n-k}(-1)^{j} \frac{\langle a \mid r\rangle_{q, k+j+1} S_{q}^{n+1, k+j+1}(\mathbf{a})}{\langle a \mid r\rangle_{q, k+1} q^{(a+r k)(j+1)+r\binom{(j+1}{2}}}, \tag{22}
\end{equation*}
$$

where $\langle a \mid r\rangle_{q, n}=\prod_{i=0}^{n-1}[a+r i]_{q}$.
Proof. Since

$$
[x-a-r k]_{q}=\left([x]_{q}-[a+r k]_{q}\right) \frac{1}{q^{a+r k}},
$$

then

$$
\begin{aligned}
\sum_{k=0}^{n+1} S_{q}^{n+1, k}(\mathbf{a}) Q_{q}^{k, \mathbf{a}}(x) & =[x]_{q}^{n}[x]_{q} \\
& =\left(\sum_{k=0}^{n} S_{q}^{n, k}(\mathbf{a}) Q_{q}^{k, \mathbf{a}}(x)\right)\left(q^{a+r k}[x-a-r k]_{q}+[a+r k]_{q}\right) \\
& =\sum_{k=0}^{n+1}\left\{q^{a+r(k-1)} S_{q}^{n, k-1}(\mathbf{a})+[a+r k]_{q} S_{q}^{n, k}(\mathbf{a})\right\} Q_{q}^{k, \mathbf{a}}(x)
\end{aligned}
$$

The triangular recurrence relation is obtained by comparing the coefficients of $Q_{q}^{k, \mathbf{a}}(x)$. The vertical recurrence relation can be derived by repeated application of (20). That is,

$$
\begin{aligned}
S_{q}^{n+1, k+1}(\mathbf{a})= & q^{a+r k} S_{q}^{n, k}(\mathbf{a})+q^{a+r k}[a+r(k+1)]_{q} S_{q}^{n-1, k}(\mathbf{a}) \\
& +q^{a+r k}[a+r(k+1)]_{q}^{2} S_{q}^{n-2, k}(\mathbf{a})
\end{aligned}
$$

$$
\begin{aligned}
& +q^{a+r k}[a+r(k+1)]_{q}^{3} S_{q}^{n-3, k}(\mathbf{a}) \\
& +\cdots+q^{a+r k}[a+r(k+1)]_{q}^{n-k} S_{q}^{k, k}(\mathbf{a}) \\
= & q^{a+r k} \sum_{j=k}^{n-k}[a+r(k+1)]_{q}^{n-j} S_{q}^{j, k}(\mathbf{a}) .
\end{aligned}
$$

Finally, by evaluating the right-hand side of (22) using (20), we get

$$
\begin{aligned}
& \sum_{j=0}^{n-k}(-1)^{j} \frac{\langle a \mid r\rangle_{q, k+j+1} S_{q}^{n+1, k+j+1}(\mathbf{a})}{\langle a \mid r\rangle_{q, k+1} q^{(a+r k)(j+1)+r\binom{j+1}{2}}} \\
= & \sum_{j=0}^{n-k}(-1)^{j} \frac{\langle a \mid r\rangle_{q, k+j+1} q^{a+r(k+j)} S_{q}^{n, k+j}(\mathbf{a})}{\langle a \mid r\rangle_{q, k+1} q^{(a+r k)(j+1)+r\binom{j+1}{2}}} \\
& +\sum_{j=0}^{n-k}(-1)^{j} \frac{\langle a \mid r\rangle_{q, k+j+1} S_{q}^{n, k+j+1}(\mathbf{a})}{\langle a \mid r\rangle_{q, k+1} q^{(a+r k)(j+1)+r\binom{j+1}{2}}} \\
= & \sum_{j=1}^{n-k}(-1)^{j} \frac{\langle a \mid r\rangle_{q, k+j+1} q^{a+r(k+j)} S_{q}^{n, k+j}(\mathbf{a})}{\langle a \mid r\rangle_{q, k+1} q^{(a+r k)(j+1)+r\binom{j+1}{2}}} \\
& +S_{q}^{n, k}(\mathbf{a})+\sum_{j=1}^{n-k}(-1)^{j-1} \frac{\langle a \mid r\rangle_{q, k+j+1} S_{q}^{n, k+j}(\mathbf{a})}{\langle a \mid r\rangle_{q, k+1} q^{(a+r k) j+r\binom{j}{2}}} \\
= & S_{q}^{n, k}(\mathbf{a}) .
\end{aligned}
$$

These prove the theorem.
Remark 2.2. The following observations are significant:
(i) From (20), we have

$$
\begin{equation*}
S_{q}^{n, 0}(\mathbf{a})=[a]_{q}^{n} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{q}^{n, n}(\mathbf{a})=q^{r\binom{n}{2}+a n} \tag{24}
\end{equation*}
$$

(ii) By taking the limits as $q \rightarrow 1$, the results in Theorem 2.1 reduce back to the triangular, vertical and horizontal recurrence relations for the classical Ruciński-Voigt numbers presented in [14].
(iii) When $a=-\alpha$ and $r=1$ in Theorem 2.1, we obtain the q-noncentral Stirling numbers of the second kind [11, Definition 1 and Theorem 4]. That is,

$$
\begin{equation*}
S_{q}^{n, k}\left(\mathbf{a}_{5}\right)=S_{\alpha}[n, k]_{q}, \tag{25}
\end{equation*}
$$

where $\mathbf{a}_{5}=(-\alpha, 1-\alpha, 2-\alpha, 3-\alpha, \ldots)$.
(iv) When $a=0$ and $r=\alpha$ in Theorem 2.1, we obtain the q-analogue of the translated Whitney numbers of the second kind, denoted by $\left.w_{(\alpha)}^{2} n, k\right]_{q}$ [23, Equations 30, 34 and 41]. That is,

$$
\begin{equation*}
\left.S_{q}^{n, k}\left(\mathbf{a}_{4}\right)=w_{(\alpha)}^{2} n, k\right]_{q} . \tag{26}
\end{equation*}
$$

The defining relation in (19) may be expressed as

$$
\begin{aligned}
{[a+r k]_{q} } & =\sum_{j=0}^{n} S_{q}^{n, j}(\mathbf{a}) \prod_{i=0}^{j-1}[k r-i r]_{q} \\
& =\sum_{j=0}^{k}\binom{k}{j}_{q^{r}}\left\{\frac{S_{q}^{n, j}(\mathbf{a}) \prod_{i=0}^{j-1}[k r-i r]_{q}}{\left(\begin{array}{l}
k \\
j
\end{array} q_{q^{r}}\right.}\right\}
\end{aligned}
$$

Applying the q-binomial inversion formula (see [9]) and since $\prod_{i=0}^{k-1}[k r-i r]_{q}=$ $[k]_{q^{r}}![r]_{q}^{k}$, we get

$$
\begin{equation*}
S_{q}^{n, k}(\mathbf{a})=\frac{1}{[k]_{q^{r}}![r]_{q}^{k}} \sum_{j=0}^{k}(-1)^{k-j} q^{r\left(\frac{k-j}{2}\right)}\binom{k}{j}_{q^{r}}[a+r j]_{q}^{n} . \tag{27}
\end{equation*}
$$

Furthermore, let

$$
f_{k}(t):=\sum_{n=0}^{\infty} S_{q}^{n, k}(\mathbf{a}) \frac{t^{n}}{[n]_{q}!}
$$

be the exponential generating function of $S_{q}^{n, k}(\mathbf{a})$. Then multiplying both sides of (27) by $\frac{t^{n}}{[n]_{q}!}$ and summing over n gives

$$
\begin{equation*}
f_{k}(t)=\frac{1}{[k]_{q^{r}}![r]_{q}^{k}} \sum_{j=0}^{k}(-1)^{k-j} q^{r\left({ }_{2}^{k-j}\right)}\binom{k}{j}_{q^{r}} e_{q}\left(t[a+j r]_{q}\right), \tag{28}
\end{equation*}
$$

where $e_{q}\left(t[j r+a]_{q}\right)$ is the q-exponential function defined by

$$
\begin{equation*}
e_{q}(x)=\sum_{j=0}^{\infty} \frac{x^{j}}{[j]_{q}!} . \tag{29}
\end{equation*}
$$

Making use of the explicit formula of the known q-difference operator (see the work of Kim and Son [20]) given by

$$
\begin{equation*}
\Delta_{q}^{k} f(x)=\sum_{j=0}^{k}(-1)^{k-j} q^{\left(k_{2}^{k-j}\right)}\binom{k}{j}_{q} f(x+j) \tag{30}
\end{equation*}
$$

gives

$$
\begin{equation*}
f_{k}(t)=\left\{\Delta_{q}^{k}\left(\frac{e_{q}\left(t[a+r x]_{q}\right)}{[k]_{q^{r}}![r]_{q}^{k}}\right)\right\}_{x=0} \tag{31}
\end{equation*}
$$

Hence, we have proved the results in the next theorem.

Theorem 2.3. The q-Ruciński-Voigt numbers $S_{q}^{n, k}(\mathbf{a})$ satisfy the explicit formula

$$
\begin{equation*}
S_{q}^{n, k}(\mathbf{a})=\frac{1}{\left.[k]_{q^{r}!}!r\right]_{q}^{k}} \sum_{j=0}^{k}(-1)^{k-j} q^{r\left({ }_{2}^{k-j}\right)}\binom{k}{j}_{q^{r}}[a+r j]_{q}^{n} \tag{32}
\end{equation*}
$$

and the exponential generating function

$$
\begin{equation*}
f_{k}(t):=\sum_{n=0}^{\infty} S_{q}^{n, k}(\mathbf{a}) \frac{t^{n}}{[n]_{q}!}=\left\{\Delta_{q}^{k}\left(\frac{e_{q}\left(t[a+r x]_{q}\right)}{[k]_{q^{r}}![r]_{q}^{k}}\right)\right\}_{x=0} \tag{33}
\end{equation*}
$$

Remark 2.4. Observe that if we take the limits of (32) and (33) as $q \rightarrow 1$, we get

$$
\lim _{q \rightarrow 1} S_{q}^{n, k}(\mathbf{a})=\frac{1}{k!r^{k}} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j}(j r+a)^{n}=S_{k}^{n}(\mathbf{a})
$$

and

$$
\lim _{q \rightarrow 1} f_{k}(t)=\frac{1}{r^{k} k!} e^{a x}\left(e^{r x}-1\right)^{k}=\sum_{n=k}^{\infty} S_{k}^{n}(\mathbf{a}) \frac{x^{n}}{n!}
$$

respectively. The first limit implies that $S_{q}^{n, k}(\mathbf{a})$ is a proper q-analogue of the numbers $S_{k}^{n}(\mathbf{a})$. We note that the exponential generating function in (33) still holds when t is replaced with $[t]_{q}$. That is,

$$
\begin{equation*}
\sum_{n=0}^{\infty} S_{q}^{n, k}(\mathbf{a}) \frac{[t]_{q}^{n}}{[n]_{q}!}=\left\{\Delta_{q}^{k}\left(\frac{e_{q}\left([t]_{q}[a+r x]_{q}\right)}{[k]_{q^{r}}![r]_{q}^{k}}\right)\right\}_{x=0} \tag{34}
\end{equation*}
$$

And when $a=-\alpha$ and $r=1,(32)$ and (34) reduce to similar formulas for the q-noncentral Stirling numbers of the second kind (cf. [11, Theorems 5 and 8]). Similarly, when $a=0$ and $r=\alpha$, (32) and (34) reduce to similar formulas for the q-analogue of the translated Whitney numbers of the second kind (cf. [23, Theorem 2.11]).
Theorem 2.5. The q-Ruciński-Voigt numbers $S_{q}^{n, k}(\mathbf{a})$ satisfy the rational generating function given by

$$
\begin{equation*}
g_{k}(t):=\sum_{n=k}^{\infty} S_{q}^{n, k}(\mathbf{a}) t^{n-k}=\frac{q^{r\binom{k}{2}+k a}}{\prod_{j=0}^{k}\left(1-t[a+r j]_{q}\right)}, \tag{35}
\end{equation*}
$$

and the explicit formula in complete symmetric polynomial form given by

$$
\begin{equation*}
S_{q}^{n, k}(\mathbf{a})=q^{r\binom{k}{2}+k a} \sum_{0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n-k} \leq k} \prod_{i=1}^{n-k}\left[a+r j_{i}\right]_{q} \tag{36}
\end{equation*}
$$

Proof. We will prove the results by induction on k. Let $g_{k}(t)$ be the rational generating function of $S_{q}^{n, k}(\mathbf{a})$. When $k=0$, we have

$$
g_{0}(t)=\sum_{n=0}^{\infty} S_{q}^{n, 0}(\mathbf{a}) t^{n}=\sum_{n=0}^{\infty}[a]_{q}^{n} t^{n}=\frac{1}{1-[a]_{q} t}
$$

Furthermore, with $k>0$ and (20) we obtain

$$
\begin{aligned}
g_{k}(t)= & \sum_{n=k}^{\infty} q^{a+r(k-1)} S_{q}^{n-1, k-1}(\mathbf{a}) t^{(n-1)-(k-1)} \\
& +t[a+r k]_{q} \sum_{n=k}^{\infty} S_{q}^{n-1, k}(\mathbf{a}) t^{(n-1)-k} \\
= & q^{a+r(k-1)} g_{k-1}(t)+t[a+r k]_{q} g_{k}(t) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
g_{k}(t) & =\frac{q^{a+r(k-1)}}{1-t[a+r k]_{q}} g_{k-1}(t) \\
& =\frac{q^{r\binom{k}{2}+k a}}{\prod_{j=0}^{k}\left(1-t[a+r j]_{q}\right)}
\end{aligned}
$$

Now, we note that (36) yields $S_{q}^{0,0}(\mathbf{a})=1$, which is in agreement with the initial value of $S_{q}^{n, k}(\mathbf{a})$. We suppose that (36) holds up to n for $k=0,1,2, \ldots, n$. Then by (20),

$$
\begin{aligned}
S_{q}^{n+1, k}(\mathbf{a})= & q^{a+r(k-1)}\left(q^{r\binom{k-1}{2}+a(k-1)} \sum_{0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n-(k-1)} \leq k-1} \prod_{i=1}^{n-(k-1)}\left[a+r j_{i}\right]_{q}\right) \\
& +[a+r k]_{q}\left(q^{r\binom{k}{2}+k a} \sum_{0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n-k} \leq k} \prod_{i=1}^{n-k}\left[a+r j_{i}\right]_{q}\right) \\
= & q^{r\binom{k}{2}+k a} \sum_{0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n+1-k} \leq k} \prod_{i=1}^{n+1-k}\left[a+r j_{i}\right]_{q} .
\end{aligned}
$$

Finally, (36) yields $S_{q}^{n+1, n+1}(\mathbf{a})=q^{r\binom{n+1}{2}+a(n+1)}$ which is in agreement with (24). This completes the proof.

Remark 2.6. Apart from $q^{r\binom{k}{2}+k a}$, the right-hand side of (36) is in complete symmetric polynomial form. We also observe that as $q \rightarrow 1$, the generating function and explicit formula obtained in the previous theorem reduce back to similar identities for the classical Ruciński-Voigt numbers. Now, if we replace t with $[t]_{q}$ in (35), we get

$$
\begin{equation*}
\sum_{n=k}^{\infty} S_{q}^{n, k}(\mathbf{a})[t]_{q}^{n-k}=\frac{q^{r\binom{k}{2}+k a}}{\prod_{j=0}^{k}\left(1-[t]_{q}[a+r j]_{q}\right)} \tag{37}
\end{equation*}
$$

The results of Corcino et al. [11, Theorems 10 and 11] can be obtained from this when $a=-\alpha$ and $r=1$ in (37) and (36), while the explicit formula for
the q-analogue of Mangontarum et al. [23, Equation 57] is the case when $a=0$ and $r=\alpha$ in (36).

3. In the context of \boldsymbol{A}-tableaux

A 0-1 tableau is a pair $\varphi=(\lambda, f)$, where $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}\right)$ is a partition of an integer m and $f=\left(f_{i j}\right)_{1 \leq j \leq \lambda_{i}}$ is a "filling" of the cells of the corresponding Ferrers diagram of shape $\bar{\lambda}$ with 0 's and 1 's in such a way that there is exactly one 1 in each column. In line with this, an A-tableau is defined to be a list Φ of column c of a Ferrers diagram of λ (by decreasing order of length) such that the length $|c|$ is part of a sequence $A=\left(a_{i}\right)_{i \geq 0}$, a strictly increasing sequence of nonnegative integers. These tableaux were first introduced in the paper of de Médicis and Leroux [28]. Combinatorial interpretations of the Stirling numbers and their different extensions and generalizations can be seen in the same paper and in subsequent works of others (see [11, 14, 22, 23]).

Let ω be a function from the set of nonnegative integers N to a ring K, and suppose that Φ is an A-tableau with r columns of length $|c|$. It is known that Φ might contain a finite number of columns whose lengths are zero since $0 \in A$ and if $\omega(0) \neq 0$ (cf. [28]). Let $T^{A}(x, y)$ be the set of all A-tableaux with $A=\{0,1,2,3, \ldots, x\}$ and exactly y columns, some of which are possibly of length zero. The next theorem expresses the q-Ruciński-Voigt numbers in terms of a sum of weights of A-tableaux.
Theorem 3.1. Let $\omega: N \longrightarrow K$ be a function from the set of positive integers N to a ring K (column weights according to length) defined by $\omega(|c|)=[a+$ $r|c|]_{q}$, where a and r are complex numbers, and $|c|$ is the length of column c of an A-tableau in $T^{A}(k, n-k)$. Then

$$
\begin{equation*}
q^{-r\binom{k}{2}-k a} S_{q}^{n, k}(\mathbf{a})=\sum_{\Phi \in T^{A}(k, n-k)} \prod_{c \in \Phi} \omega(|c|), \tag{38}
\end{equation*}
$$

where $\mathbf{a}=(a, a+r, a+2 r, a+3 r, \ldots)$.
Proof. Let Φ in $T^{A}(k, n-k)$. This implies that Φ has exactly $n-k$ columns, say $c_{1}, c_{2}, \ldots, c_{n-k}$, whose lengths are $j_{1}, j_{2}, \ldots, j_{n-k}$, respectively. Moreover, for each column $c_{i} \in \Phi, i=1,2, \ldots, n-k$, we have $\left|c_{i}\right|=j_{i}$ and $\omega\left(\left|c_{i}\right|\right)=\left[a+r j_{i}\right]_{q}$. Hence, we get

$$
\prod_{c \in \Phi} \omega(|c|)=\prod_{i=1}^{n-k} \omega\left(\left|c_{i}\right|\right)=\prod_{i=1}^{n-k}\left[a+r j_{i}\right]_{q}
$$

Since $\Phi \in T^{A}(k, n-k)$, then

$$
\begin{aligned}
\sum_{\Phi \in T^{A}(k, n-k)} \prod_{c \in \Phi} \omega(|c|) & =\sum_{0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n-k} \leq k} \prod_{i=1}^{n-k} \omega\left(\left|c_{i}\right|\right) \\
& =\sum_{0 \leq j_{1} \leq j_{2} \leq \cdots \leq j_{n-k} \leq k} \prod_{i=1}^{n-k}\left[a+r j_{i}\right]_{q} .
\end{aligned}
$$

$$
=q^{-r\binom{k}{2}-k a} S_{q}^{n, k}(\mathbf{a})
$$

This completes the proof.

3.1. Combinatorics of A-tableaux and convolution-type identities

Our aim is to demonstrate a simple combinatorics of A-tableaux. Through this, convolution-type identities are obtained. To start, we first write (38) as

$$
\begin{equation*}
q^{-r\binom{k}{2}-k a} S_{q}^{n, k}(\mathbf{a})=\sum_{\Phi \in T^{A}(k, n-k)} \omega_{A}(\Phi), \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{A}(\Phi)=\prod_{c \in \Phi} \omega(|c|)=\prod_{c \in \Phi}[a+r|c|]_{q},|c| \in\{0,1,2, \ldots, k\} . \tag{40}
\end{equation*}
$$

The following theorem shows how an additive constant affects the recurrence formula for $S_{q}^{n, k}(\mathbf{a})$:
Theorem 3.2. For nonnegative integers n and k, and complex numbers a and r, the q-Rucinski-Voigt numbers satisfies the following identity:

$$
\begin{equation*}
S_{q}^{n, k}(\mathbf{a})=\sum_{j=k}^{n}\binom{n}{j} q^{a_{2}(n-k)+k\left(a-a_{1}\right)}\left(-\left[-a_{2}\right]_{q}\right)^{n-j} S_{q}^{n, k}\left(\mathbf{a}^{*}\right), \tag{41}
\end{equation*}
$$

where $\mathbf{a}^{*}=\left(a_{1}, a_{1}+r, a_{1}+2 r, a_{1}+3 r, \ldots\right)$ and $a=a_{1}+a_{2}$ for some numbers a_{1} and a_{2}.
Proof. For $\Phi \in T^{A}(k, n-k)$, we substitute $j_{i}=|c|$ in (40). That is

$$
\begin{equation*}
\omega_{A}(\Phi)=\prod_{i=1}^{n-k}\left[a+r j_{i}\right]_{q} \tag{42}
\end{equation*}
$$

$j_{i} \in\{0,1,2, \ldots, k\}$. Suppose $a=a_{1}+a_{2}$ for some numbers a_{1} and a_{2}. Then with $\omega^{*}\left(j_{i}\right)=\left[a_{1}+r j_{i}\right]_{q}$, we may write

$$
\begin{aligned}
\omega_{A}(\Phi) & =\prod_{i=1}^{n-k}\left[a_{2}+\left(a_{1}+r j_{i}\right)\right]_{q} \\
& =\prod_{i=1}^{n-k} q^{a_{2}}\left(\omega^{*}\left(j_{i}\right)-\left[-a_{2}\right]_{q}\right) \\
& =q^{a_{2}(n-k)} \sum_{\ell=0}^{n-k}\left(-\left[-a_{2}\right]_{q}\right)^{n-k-\ell} \sum_{j_{1} \leq q_{1} \leq q_{2} \leq \cdots \leq q_{l} \leq j_{n-k}} \prod_{i=1}^{\ell} \omega^{*}\left(q_{i}\right) .
\end{aligned}
$$

Let B_{Φ} be the set of all A-tableaux corresponding to Φ such that for each $\psi \in B_{\Phi}$, one of the following is true:
ψ has no column whose weight is $-\left[-a_{2}\right]_{q}$;
ψ has one columns whose weight is $-\left[-a_{2}\right]_{q}$;
ψ has two columns whose weight is $-\left[-a_{2}\right]_{q}$;
ψ has $n-k$ columns whose weight is $-\left[-a_{2}\right]_{q}$.
Thus, we have

$$
\omega_{A}(\Phi)=\sum_{\psi \in B_{\Phi}} \omega_{A}(\psi)
$$

If there are ℓ columns in ψ with weights other than $-\left[-a_{2}\right]_{q}$, then

$$
\omega_{A}(\psi)=\prod_{c \in \psi} \omega^{*}(|c|)=q^{a_{2}(n-k)}\left(-\left[-a_{2}\right]_{q}\right)^{n-k-\ell} \prod_{i=1}^{\ell} \omega^{*}\left(q_{i}\right),
$$

where $q_{1}, q_{2}, \ldots, q_{r} \in\left\{j_{1}, j_{2}, \ldots, j_{n-k}\right\}$. Hence, (39) may be rewritten into

$$
\begin{equation*}
q^{-r\binom{k}{2}-k a} S_{q}^{n, k}(\mathbf{a})=\sum_{\Phi \in T^{A}(k, n-k)} \sum_{\psi \in B_{\Phi}} \omega_{A}(\psi) . \tag{43}
\end{equation*}
$$

It is known from [11] that for each ℓ, there correspond $\binom{n-k}{\ell}$ tableaux with ℓ columns having weights $\omega^{*}\left(q_{i}\right), q_{i} \in\left\{j_{1}, j_{2}, j_{3}, \ldots, j_{n-k}\right\}$. Since $T^{A}(k, n-k)$ contains $\binom{n}{k}$ tableaux, then for each $\Phi \in T^{A}(k, n-k)$, there are $\binom{n}{k}\binom{n-k}{\ell} A$ tableaux corresponding to Φ. But only $\binom{\ell+k}{\ell}$ of these tableaux are distinct. Hence, every tableau ψ with ℓ columns of weights other than $-\left[-a_{2}\right]_{q}$ appears

$$
\frac{\binom{n}{k}\binom{n-k}{\ell}}{\binom{\ell+k}{\ell}}=\binom{n}{\ell+k}
$$

times in the collection (cf. [11]). It then follows that

$$
q^{-r\binom{k}{2}-k a} S_{q}^{n, k}(\mathbf{a})=\sum_{\ell=0}^{n-k}\binom{n}{\ell+k} q^{a_{2}(n-k)}\left(-\left[-a_{2}\right]_{q}\right)^{n-k-\ell} \sum_{\psi \in \bar{B}_{\ell}} \prod_{c \in \psi} \omega^{*}(|c|)
$$

where \bar{B}_{ℓ} denotes the set of all tableaux ψ having ℓ columns of weights $w^{*}\left(j_{i}\right)$. Reindexing the two sums give

$$
\begin{equation*}
q^{-r\binom{k}{2}-k a} S_{q}^{n, k}(\mathbf{a})=\sum_{j=k}^{n}\binom{n}{j} q^{a_{2}(n-k)}\left(-\left[-a_{2}\right]_{q}\right)^{n-j} \sum_{\psi \in \bar{B}_{j-k}} \prod_{c \in \psi} \omega^{*}(|c|) . \tag{44}
\end{equation*}
$$

Since $\bar{B}_{j-k}=T^{A}(k, j-k)$, then

$$
\begin{equation*}
\sum_{\psi \in \bar{B}_{j-k} \in \in \psi} \prod_{c} \omega^{*}(|c|)=q^{-r\left({ }_{2}^{2}\right)-k a_{1}} S_{q}^{n, k}\left(\mathbf{a}^{*}\right), \tag{45}
\end{equation*}
$$

where $\mathbf{a}^{*}=\left(a_{1}, a_{1}+r, a_{1}+2 r, a_{1}+3 r, \ldots\right)$. Finally, combining this with (44) gives the desired result.

For $A_{1}=\{0,1,2, \ldots, p\}$ and $A_{2}=\{p+1, p+2, \ldots, p+j+1\}$, let $\Phi_{1} \in$ $T^{A_{1}}(p, k-p)$ and $\Phi_{2} \in T^{A_{2}}(j, n-k-j)$. We can generate an A-tableau Φ with $n-p-j$ columns whose lengths are in $A=\{0,1,2, \ldots, p+j+1\}$ by joining
the columns of the tableaux Φ_{1} and Φ_{2}. Hence, for $\Phi \in T^{A}(p+j+1, n-p-j)$, we can have
$\sum_{\Phi \in T^{A}(p+j+1, n-p-j)} \omega_{A}(\Phi)=\sum_{k=0}^{n}\left\{\sum_{\Phi_{1} \in T^{A_{1}}(p, k-p)} \omega_{A_{1}}\left(\Phi_{1}\right) \cdot \sum_{\Phi_{2} \in T^{A_{2}}(j, n-k-j)} \omega_{A_{2}}\left(\Phi_{2}\right)\right\}$.
Clearly, by (39),

$$
\begin{equation*}
\sum_{\Phi \in T^{A}(p+j+1, n-p-j)} \omega_{A}(\Phi)=q^{-r\left({ }_{2}^{p+j+1}\right)-(p+j+1) a} S_{q}^{n+1, p+j+1}(\mathbf{a}) \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\Phi_{1} \in T^{A_{1}}(p, k-p)} \omega_{A_{1}}\left(\Phi_{1}\right)=q^{-r\binom{p}{2}-p a} S_{q}^{k, p}(\mathbf{a}) . \tag{48}
\end{equation*}
$$

Also,

$$
\begin{aligned}
\sum_{\Phi_{2} \in T^{A_{2}}(j, n-k-j)} \omega_{A_{2}}\left(\Phi_{2}\right) & =\sum_{p+1 \leq g_{1} \leq g_{2} \leq \cdots \leq g_{n-k-j} \leq p+j+1} \prod_{i=1}^{n-k-j}\left[a+r g_{i}\right]_{q} \\
& =\sum_{0 \leq g_{1} \leq g_{2} \leq \cdots \leq g_{n-k-j} \leq j} \prod_{i=1}^{n-k-j}\left[a+r\left(p+1+g_{i}\right)\right]_{q} \\
& =\sum_{0 \leq g_{1} \leq g_{2} \leq \cdots \leq g_{n-k-j} \leq j} \prod_{i=1}^{n-k-j}\left[(a+r p+r)+r g_{i}\right]_{q} \\
& =q^{-r\binom{j}{2}-j(a+r p+r)} S_{q}^{n-k, j}(\overline{\mathbf{a}}) .
\end{aligned}
$$

Here, $\overline{\mathbf{a}}=(a+r p+r, a+r p+2 r, a+r p+3 r, \ldots)$. Thus,

$$
\begin{align*}
& q^{-r\binom{p+j+1}{2}-(p+j+1) a} S_{q}^{n+1, p+j+1}(\mathbf{a}) \\
= & \sum_{k=0}^{n} q^{-r\binom{p}{2}-p a} S_{q}^{k, p}(\mathbf{a}) \cdot q^{-r\binom{j}{2}-j(a+r p+r)} S_{q}^{n-k, j}(\overline{\mathbf{a}}) . \tag{49}
\end{align*}
$$

Since
(50) $r\binom{p+j+1}{2}+(p+j+1) a-r\binom{p}{2}-p a-r\binom{j}{2}-j(a+r p+r)=a+r p$,
then we get

$$
\begin{equation*}
S_{q}^{n+1, p+j+1}(\mathbf{a})=\sum_{k=0}^{n} q^{a+r p} S_{q}^{k, p}(\mathbf{a}) S_{q}^{n-k, j}(\overline{\mathbf{a}}) \tag{51}
\end{equation*}
$$

Similarly, for $B_{1}=\{0,1,2, \ldots, k\}$ and $B_{2}=\{k, k+1, k+2, \ldots, n\}$, let $\phi_{1} \in$ $T^{B_{1}}(k, p-k)$ and $\phi_{2} \in T^{B_{2}}(n-k, j-n+k)$. Then we can generate an A tableau ϕ with $p+j-n$ columns whose lengths are in $A=\{0,1,2, \ldots, n\}$ by
joining the columns of ϕ_{1} and ϕ_{2}. Hence, for $\phi \in T^{A}(n, p+j-n)$,
(52)

$$
\sum_{\phi \in T^{A}(n, p+j-n)} \omega_{A}(\phi)=\sum_{k=0}^{n}\left\{\sum_{\phi_{1} \in T^{B_{1}}(k, p-k)} \omega_{B_{1}}\left(\phi_{1}\right) \cdot \sum_{\phi_{2} \in T^{B_{2}}(n-k, j-n+k)} \omega_{B_{2}}\left(\phi_{2}\right)\right\}
$$

Again by (39),

$$
\begin{equation*}
\sum_{\phi \in T^{A}(n, p+j-n)} \omega_{A}(\phi)=q^{-r\binom{n}{2}-n a} S_{q}^{p+j, n}(\mathbf{a}) \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\phi_{1} \in T^{B_{1}}(k, p-k)} \omega_{B_{1}}\left(\phi_{1}\right)=q^{-r\binom{k}{2}-k a} S_{q}^{p, k}(\mathbf{a}) . \tag{54}
\end{equation*}
$$

Furthermore,

$$
\begin{aligned}
\sum_{\phi_{2} \in T^{B_{2}}} \omega_{(n-k, j-n+k)} \omega_{B_{2}}\left(\phi_{2}\right) & =\sum_{k \leq g_{1} \leq g_{2} \leq \cdots \leq g_{j-n+k} \leq n} \prod_{i=1}^{j-n+k}\left[a+r g_{i}\right]_{q} \\
& =\sum_{0 \leq g_{1} \leq g_{2} \leq \cdots \leq g_{j-n+k} \leq n-k} \prod_{i=1}^{j-n+k}\left[a+r\left(k+g_{i}\right)\right]_{q} \\
& =\sum_{0 \leq g_{1} \leq g_{2} \leq \cdots \leq g_{j-n+k} \leq n-k} \prod_{i=1}^{j-n+k}\left[(a+r k)+r g_{i}\right]_{q} \\
& =q^{-r\binom{n-k}{2}-(n-k)(a+r k)} S_{q}^{j, n-k}(\hat{\mathbf{a}}),
\end{aligned}
$$

where $\hat{\mathbf{a}}=(a+r k, a+r k+r, a+r k+2 r, \ldots)$. Thus,

$$
\begin{equation*}
q^{-r\binom{n}{2}-n a} S_{q}^{p+j, n}(\mathbf{a})=\sum_{k=0}^{n} q^{-r\binom{k}{2}-k a} S_{q}^{p, k}(\mathbf{a}) \cdot q^{-r\binom{n-k}{2}-(n-k)(a+r k)} S_{q}^{j, n-k}(\hat{\mathbf{a}}) \tag{55}
\end{equation*}
$$

Finally, because

$$
\begin{equation*}
r\binom{n}{2}+n a-r\binom{k}{2}-k a-r\binom{n-k}{2}-(n-k)(a+r k)=0 \tag{56}
\end{equation*}
$$

we get

$$
\begin{equation*}
S_{q}^{p+j, n}(\mathbf{a})=\sum_{k=0}^{n} S_{q}^{p, k}(\mathbf{a}) S_{q}^{j, n-k}(\hat{\mathbf{a}}) . \tag{57}
\end{equation*}
$$

We formally state (51) and (57) in the next theorem.
Theorem 3.3. The q-Ruciński-Voigt numbers satisfy the following convolu-tion-type identities:

$$
\begin{equation*}
S_{q}^{n+1, p+j+1}(\mathbf{a})=\sum_{k=0}^{n} q^{a+r p} S_{q}^{k, p}(\mathbf{a}) S_{q}^{n-k, j}(\overline{\mathbf{a}}) \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
S_{q}^{p+j, n}(\mathbf{a})=\sum_{k=0}^{n} S_{q}^{p, k}(\mathbf{a}) S_{q}^{j, n-k}(\hat{\mathbf{a}}), \tag{59}
\end{equation*}
$$

where $\overline{\mathbf{a}}=(a+r p+r, a+r p+2 r, a+r p+3 r, \ldots)$ and $\hat{\mathbf{a}}=(a+r k, a+r k+$ $r, a+r k+2 r, \ldots)$.

Remark 3.4. When $r=m, a=r$ and $q \rightarrow 1$, we recover from this theorem the results recently obtained by Xu and Zhou [33, Theorem 2.4].

4. Matrix decompositions

In 2015, Pan [30] obtained a remarkable matrix decomposition that provides an explicit and nonrecursive manner of computing for the generalized Stirling numbers of Hsu and Shiue [18]. That is, if $\mathcal{S}_{\alpha, \beta, \gamma}=(S(n, k ; \alpha, \beta, \gamma))$ is the matrix whose entries are the generalized Stirling numbers $S(n, k ; \alpha, \beta, \gamma)$ defined by

$$
\begin{equation*}
(t \mid \alpha)_{n}=\sum_{k=0}^{n} S(n, k ; \alpha, \beta, \gamma)(t-\gamma \mid \beta)_{k} \tag{60}
\end{equation*}
$$

where $(t \mid \alpha)_{n}=\prod_{i=1}^{n-1}(t-i \alpha),(t \mid \alpha)_{0}=1$, then

$$
\begin{equation*}
\mathcal{S}_{\alpha, \beta, \gamma}=\mathcal{S}_{\alpha, 0,0} \cdot \mathcal{S}_{0,0, \gamma} \cdot \mathcal{S}_{0, \beta, 0} \tag{61}
\end{equation*}
$$

(cf. [30, Theorem 7]). It is important to note that although the Ruciński-Voigt numbers are given by

$$
\begin{equation*}
S(n, k ; 0, r, a)=S^{n, k}(\mathbf{a}), \tag{62}
\end{equation*}
$$

it is not wise to assume that

$$
\begin{equation*}
\mathcal{S}_{0, r, a}=\mathcal{S}_{0,0,0} \cdot \mathcal{S}_{0,0, a} \cdot \mathcal{S}_{0, r, 0} . \tag{63}
\end{equation*}
$$

This is our justification in establishing the matrix decomposition of a matrix whose entries are the numbers $S^{n, k}(\mathbf{a})$.

First, we define $\widetilde{S}^{a, r}$ to be the matrix whose entries are the Ruciński-Voigt numbers. For clarity, we will refer to this matrix as the Ruciński-Voigt matrix. Also, we let

$$
\begin{equation*}
\mathcal{V}_{r}(x)=\left(1, x,(x \mid r)_{2},(x \mid r)_{3}, \ldots,(x \mid r)_{n}, \ldots\right)^{T} \tag{64}
\end{equation*}
$$

be an infinite column vector. Note that the defining relation in (1) can be rewritten into the form

$$
\begin{equation*}
(x+a)^{n}=\sum_{k=0}^{n} S^{n, k}(\mathbf{a})(x \mid r)_{k} \tag{65}
\end{equation*}
$$

Remark 4.1. The following identity is trivial:

$$
\begin{equation*}
\mathcal{V}_{0}(x+a)=\widetilde{S}^{a, r} \mathcal{V}_{r}(x) \tag{66}
\end{equation*}
$$

Using $\mathbf{a}_{6}=(a, a, a, \ldots)$ in place of \mathbf{a} (the case when $r=0$ in $\left.\mathbf{a}\right)$ in (65) gives

$$
\sum_{k=0}^{n} S^{n, k}\left(\mathbf{a}_{6}\right) x^{k}=(x+a)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} x^{k}
$$

which implies that $S^{n, k}\left(\mathbf{a}_{6}\right)=a^{n-k}\binom{n}{k}$. On the other hand, replacing x with $r x$ in (65) gives

$$
\begin{equation*}
r^{n} x^{n}=\sum_{k=0}^{n} S^{n, k}(\mathbf{a}) \prod_{i=0}^{k-1}(r x-a-i r) \tag{67}
\end{equation*}
$$

which, in return, gives

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} r^{k-n} S^{n, k}\left(\mathbf{a}_{7}\right)(x)_{k} \tag{68}
\end{equation*}
$$

when \mathbf{a} is replaced with $\mathbf{a}_{7}=(0, r, 2 r, 3 r, \ldots)$ (the case when $a=0$ in \mathbf{a}). Comparing the coefficients of $(x)_{k}$ with the horizontal generating functions of $S(n, k)$ (cf. [9]) gives $S^{n, k}\left(\mathbf{a}_{7}\right)=r^{n-k} S(n, k)$. It is, therefore, clear that

$$
\begin{equation*}
\widetilde{S}^{0, r}=\left(r^{n-k} S(n, k)\right) \text { and } \widetilde{S}^{a, 0}=\left(a^{n-k}\binom{n}{k}\right) \tag{69}
\end{equation*}
$$

and because

$$
\begin{equation*}
\mathcal{V}_{0}(x)=\widetilde{S}^{0, r} \mathcal{V}_{r}(x) \text { and } \mathcal{V}_{0}(x+a)=\widetilde{S}^{a, 0} \mathcal{V}_{0}(x) \tag{70}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathcal{V}_{0}(x+a)=\widetilde{S}^{a, 0} \widetilde{S}^{0, r} \mathcal{V}_{r}(x) \tag{71}
\end{equation*}
$$

Comparing this with (66) yields

$$
\begin{equation*}
\left(\widetilde{S}^{a, r}-\widetilde{S}^{a, 0} \widetilde{S}^{0, r}\right) \mathcal{V}_{r}(x)=\mathbf{0} \tag{72}
\end{equation*}
$$

where $\mathbf{0}$ is the infinite-dimensional zero matrix. Since x is an arbitrary real or complex number and $\mathcal{V}_{r}(x)$ is a nonzero vector, then we obtain the following theorem:

Theorem 4.2. The Ruciński-Voigt matrix $\widetilde{S}^{a, r}$ has the following decomposition:

$$
\begin{equation*}
\widetilde{S}^{a, r}=\widetilde{S}^{a, 0} \cdot \widetilde{S}^{0, r} \tag{73}
\end{equation*}
$$

We might as well extend this result to the q-Ruciński-Voigt numbers. We start by expressing (19) as

$$
\begin{equation*}
[x+a]_{q}^{n}=\sum_{k=0}^{n} S_{q}^{n, k}(\mathbf{a})[x \mid r]_{k} \tag{74}
\end{equation*}
$$

where $[x \mid r]_{k}=\prod_{i=0}^{k-1}[x-i r]_{q}, \quad[x \mid r]_{0}=1$. Next, we define $\widetilde{S}_{q}^{a, r}=\left(S_{q}^{n, k}(\mathbf{a})\right)$ to be the q-Ruciński-Voigt matrix and let

$$
\begin{equation*}
\mathcal{V}_{q, r}[x]=\left(1,[x]_{q},[x \mid r]_{2},[x \mid r]_{3}, \ldots,[x \mid r]_{q}, \ldots\right)^{T} \tag{75}
\end{equation*}
$$

Remark 4.3. Clearly,

$$
\begin{equation*}
\mathcal{V}_{q, 0}[x+a]=\widetilde{S}_{q}^{a, r} \mathcal{V}_{q, r}[x] . \tag{76}
\end{equation*}
$$

Combining (74) with the defining relation of the q-analogue of the translated Whitney numbers of the second kind [23, Equation 4] yields

$$
\sum_{k=0}^{n} S_{q}^{n, k}\left(\mathbf{a}_{7}\right)[x \mid r]_{k}=[x]_{q}^{n}=\sum_{k=0}^{n} w_{(r)}^{2}[n, k]_{q}[x \mid r]_{k}
$$

Obviously, $S_{q}^{n, k}\left(\mathbf{a}_{7}\right)=w_{(r)}^{2}[n, k]_{q}$. On the other hand, replace a with \mathbf{a}_{6} in (19) and we obtain

$$
\begin{aligned}
\sum_{k=0}^{n} S_{q}^{n, k}\left(\mathbf{a}_{6}\right)[x-a]^{k} & =[x]_{q}^{n} \\
& =\left([x]_{q}-[a]_{q}+[a]_{q}\right)^{n} \\
& =\sum_{k=0}^{n}\binom{n}{k}[a]_{q}^{n-k} q^{a k}[x-a]^{k}
\end{aligned}
$$

Hence, $S_{q}^{n, k}\left(\mathbf{a}_{6}\right)=q^{a k}\binom{n}{k}[a]_{q}^{n-k}$. Moreover, we have

$$
\begin{equation*}
\widetilde{S}_{q}^{0, r}=\left(w_{(r)}^{2}[n, k]_{q}\right) \text { and } \widetilde{S}_{q}^{a, 0}=\left(q^{a k}\binom{n}{k}[a]_{q}^{n-k}\right) \tag{77}
\end{equation*}
$$

We are now ready for the next theorem.
Theorem 4.4. The q-Ruciński-Voigt matrix $\widetilde{S}_{q}^{a, r}$ has the following decomposition:

$$
\begin{equation*}
\widetilde{S}_{q}^{a, r}=\widetilde{S}_{q}^{a, 0} \cdot \widetilde{S}_{q}^{0, r} \tag{78}
\end{equation*}
$$

Proof. When $a=0$, we have $\mathcal{V}_{q, 0}[x]=\widetilde{S}_{q}^{0, r} \mathcal{V}_{q, r}[x]$, while when $r=0, \mathcal{V}_{q, 0}[x+$ $a]=\widetilde{S}_{q}^{a, 0} \mathcal{V}_{q, 0}[x]$. Hence,

$$
\begin{equation*}
\mathcal{V}_{q, 0}[x+a]=\widetilde{S}_{q}^{a, 0} \widetilde{S}_{q}^{0, r} \mathcal{V}_{q, r}[x] \tag{79}
\end{equation*}
$$

Compare this with (76) and we have

$$
\begin{equation*}
\left(\widetilde{S}_{q}^{a, r}-\widetilde{S}_{q}^{a, 0} \widetilde{S}_{q}^{0, r} \mathcal{V}_{q, r}[x]\right)=\mathbf{0} \tag{80}
\end{equation*}
$$

Since x is arbitrary and $\mathcal{V}_{q, r}[x]$ is nonzero, then we obtain the desired result.
The results in Theorems 4.2 and 4.4 can be used to compute for the values of the Ruciński-Voigt and the q-Ruciński-Voigt numbers, respectively, for nonnegative integers n and $k(k \leq n)$, and complex numbers a and r in an explicit but nonrecursive manner.

References

[1] M. Arik and D. D. Coon, Hilbert spaces of analytic functions and generalized coherent states, J. Mathematical Phys. 17 (1976), no. 4, 524-527.
[2] H. Belbachir and I. E. Bousbaa, Translated Whitney and r-Whitney numbers: a combinatorial approach, J. Integer Seq. 16 (2013), no. 8, Article 13.8.6, 7 pp.
[3] M. Benoumhani, On Whitney numbers of Dowling lattices, Discrete Math. 159 (1996), no. 1-3, 13-33.
[4] , On some numbers related to Whitney numbers of Dowling lattices, Adv. in Appl. Math. 19 (1997), no. 1, 106-116.
[5] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), no. 3, 241-259.
[6] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
[7] - Weighted Stirling numbers of the first and second kind. I, Fibonacci Quart. 18 (1980), no. 2, 147-162.
[8] J. Cigler, A new q-analog of Stirling numbers, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 201 (1992), no. 1-10, 97-109.
[9] L. Comtet, Advanced Combinatorics, revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974.
[10] R. B. Corcino, The (r, β)-Stirling numbers, The Mindanao Forum 14 (1999), 91-99.
[11] R. B. Corcino, R. B. Corcino, J. M. Ontolan, C. M. Perez-Fernandez, and E. R. Cantallopez, The Hankel transform of q-noncentral Bell numbers, Int. J. Math. Math. Sci. 2015 (2015), Art. ID 417327, 10 pp.
[12] R. B. Corcino and J. C. Fernandez, A combinatorial approach for q-analogue of r-Stirling numbers, British J. Math. Comput. Sci. 4 (2014), 1268-1279.
[13] R. B. Corcino and M. M. Mangontarum, On multiparameter q-noncentral Stirling and Bell numbers, Ars Combin. 118 (2015), 201-220.
[14] R. B. Corcino and C. B. Montero, A q-analogue of Rucinski-Voigt numbers, ISRN Discrete Math. 2012 (2012), Article ID 592818, 18 pages.
[15] R. Ehrenborg, Determinants involving q-Stirling numbers, Adv. in Appl. Math. 31 (2003), no. 4, 630-642.
[16] B. S. El-Desouky, R. S. Gomaa, and N. P. Cakić, q-analogues of multiparameter noncentral Stirling and generalized harmonic numbers, Appl. Math. Comput. 232 (2014), 132-143.
[17] H. W. Gould, The q-Stirling numbers of first and second kinds, Duke Math. J. 28 (1961), 281-289.
[18] L. C. Hsu and P. J.-S. Shiue, A unified approach to generalized Stirling numbers, Adv. in Appl. Math. 20 (1998), no. 3, 366-384.
[19] J. Katriel, Stirling number identities: interconsistency of q-analogues, J. Phys. A 31 (1998), no. 15, 3559-3572.
[20] M.-S. Kim and J.-W. Son, A note on q-difference operators, Commun. Korean Math. Soc. 17 (2002), no. 3, 423-430.
[21] M. Koutras, Noncentral Stirling numbers and some applications, Discrete Math. 42 (1982), no. 1, 73-89.
[22] M. M. Mangontarum, Some theorems and applications of the (q, r)-Whitney numbers, J. Integer Seq. 20 (2017), no. 2, Art. 17.2.5, 26 pp.
[23] M. M. Mangontarum, O. I. Cauntongan, and A. M. Dibagulun, A note on the translated Whitney numbers and their q-analogues, Turkish J. Anal. Number Theory 4 (2016), 74-81.
[24] M. M. Mangontarum, O. I. Cauntongan, and A. P. Macodi-Ringia, The noncentral version of the Whitney numbers: a comprehensive study, Int. J. Math. Math. Sci. 2016 (2016), Art. ID 6206207, 16 pp .
[25] M. M. Mangontarum and A. M. Dibagulun, On the translated Whitney numbers and their combinatorial properties, British J. Appl. Sci. Technology 11 (2015), 1-15.
[26] M. M. Mangontarum and J. Katriel, On q-boson operators and q-analogues of the r Whitney and r-Dowling numbers, J. Integer Seq. 18 (2015), no. 9, Article 15.9.8, 23 pp.
[27] M. M. Mangontarum, A. P. Macodi-Ringia, and N. S. Abdulcarim, The translated Dowling polynomials and numbers, International Scholarly Research Notices 2014 (2014), Article ID 678408, 8 pages.
[28] A. de Médicis and P. Leroux, Generalized Stirling numbers, convolution formulae and p, q-analogues, Canad. J. Math. 47 (1995), no. 3, 474-499.
[29] I. Mező, A new formula for the Bernoulli polynomials, Results Math. 58 (2010), no. 3-4, 329-335.
[30] J. Pan, Matrix decomposition of the unified generalized Stirling numbers and inversion of the generalized factorial matrices, J. Integer Seq. 15 (2012), no. 6, Article 12.6.6, 9 pp.
[31] A. Ruciński and B. Voigt, A local limit theorem for generalized Stirling numbers, Rev. Roumaine Math. Pures Appl. 35 (1990), no. 2, 161-172.
[32] J. Stirling, Methodus Differentialissme Tractus de Summatione et Interpolatione Serierum Infinitarum, London, 1730.
[33] A. Xu and T. Zhou, Some identities related to the r-Whitney numbers, Integral Transforms Spec. Funct. 27 (2016), no. 11, 920-929.

Wardah M. Bent-Usman
Department of Mathematics
Mindanao State University-Main Campus
Marawi City 9700, Philippines
Email address: wardah_bentusman@yahoo.com
Amerah M. Dibagulun
Department of Mathematics
Mindanao State University-Main Campus
Marawi City 9700, Philippines
Email address: a.dibagulun@yahoo.com
Mahid M. Mangontarum
Department of Mathematics
Mindanao State University-Main Campus
Marawi City 9700, Philippines
Email address: mmangontarum@yahoo.com, mangontarum.mahid@msumain.edu.ph
Charles B. Montero
Department of Mathematics
Mindanao State University-Main Campus
Marawi City 9700, Philippines
Email address: charlesbmontero@yahoo.com

