DOI QR코드

DOI QR Code

Cytoprotective Effect of Taurine against Hydrogen Peroxide-Induced Oxidative Stress in UMR-106 Cells through the Wnt/β-Catenin Signaling Pathway

  • Lou, Jing (Department of Immunology, Jinzhou Medical University) ;
  • Han, Donghe (Department of Neurobiology, Jinzhou Medical University) ;
  • Yu, Huihui (Department of Immunology, Jinzhou Medical University) ;
  • Yu, Guang (Department of Immunology, Jinzhou Medical University) ;
  • Jin, Meihua (Department of Immunology, Jinzhou Medical University) ;
  • Kim, Sung-Jin (Departments of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, KyungHee University)
  • Received : 2018.03.19
  • Accepted : 2018.06.05
  • Published : 2018.11.01

Abstract

Osteoporosis development is closely associated with oxidative stress and reactive oxygen species (ROS). Taurine has potential antioxidant effects, but its role in osteoblasts is not clearly understood. The aim of this study was to determine the protective effects and mechanisms of actions of taurine on hydrogen peroxide ($H_2O_2$)-induced oxidative stress in osteoblast cells. UMR-106 cells were treated with taurine prior to $H_2O_2$ exposure. After treatment, cell viability, apoptosis, intracellular ROS production, malondialdehyde content, and alkaline phosphate (ALP) activity were measured. We also investigated the protein levels of ${\beta}-catenin$, ERK, CHOP and NF-E2-related factor 2 (Nrf2) along with the mRNA levels of Nrf2 downstream antioxidants. The results showed that pretreatment of taurine could reverse the inhibition of cell viability and suppress the induced apoptosis in a dose-dependent manner: taurine significantly reduced $H_2O_2$-induced oxidative damage and expression of CHOP, while it induced protein expression of Nrf2 and ${\beta}-catenin$ and activated ERK phosphorylation. DKK1, a Wnt/${\beta}-catenin$ signaling inhibitor, significantly suppressed the taurine-induced Nrf2 signaling pathway and increased CHOP. Activation of ERK signaling mediated by taurine in the presence of $H_2O_2$ was significantly inhibited by DKK1. These data demonstrated that taurine protects osteoblast cells against oxidative damage via Wnt/${\beta}-catenin$-mediated activation of the ERK signaling pathway.

Keywords

References

  1. Abdal Dayem, A., Hossain, M. K., Lee, S. B., Kim, K., Saha, S. K., Yang, G. M., Choi, H. Y. and Cho, S. G. (2017) The Role of Reactive Oxygen Species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 18, E120. https://doi.org/10.3390/ijms18010120
  2. Ahn, J., Lee, H., Kim, S. and Ha, T. (2010) Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of $$Wnt/{\beta}$$-catenin signaling. Am. J. Physiol. Cell Physiol. 298, C1510-C1516. https://doi.org/10.1152/ajpcell.00369.2009
  3. Bartell, S. M., Kim, H. N., Ambrogini, E., Han, L., Iyer, S., Serra Ucer, S., Rabinovitch, P., Jilka, R. L., Weinstein, R. S., Zhao, H., O'Brien, C. A., Manolagas, S. C. and Almeida, M. (2014) FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat. Commun. 5, 3773. https://doi.org/10.1038/ncomms4773
  4. Bernardo, I., Bozinovski, S. and Vlahos, R. (2015) Targeting oxidantdependent mechanisms for the treatment of COPD and its comorbidities. Pharmacol. Ther. 155, 60-79. https://doi.org/10.1016/j.pharmthera.2015.08.005
  5. Cervellati, C. and Bergamini, C. M. (2016) Oxidative damage and the pathogenesis of menopause related disturbances and diseases. Clin. Chem. Lab. Med. 54, 739-753.
  6. Chen, J. R., Lazarenko, O. P., Wu, X., Kang, J., Blackburn, M. L., Shankar, K., Badger, T. M. and Ronis, M. J. (2010) Dietary-induced serum phenolic acids promote bone growth via p38 MAPK/betacatenin canonical Wnt signaling. J. Bone Miner. Res. 25, 2399-2411. https://doi.org/10.1002/jbmr.137
  7. Cheung, K. L., Lee, J. H., Shu, L., Kim, J. H., Sacks, D. B. and Kong, A. N. (2013) The ras GTPase-activating-like protein IQGAP1 mediates Nrf2 protein activation via the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)-ERK pathway. J. Biol. Chem. 288, 22378-22386. https://doi.org/10.1074/jbc.M112.444182
  8. Dai, P., Mao, Y., Sun, X., Li, X., Muhammad, I., Gu, W., Zhang, D., Zhou, Y., Ni, Z., Ma, J. and Huang, S. (2017) Attenuation of oxidative stress-induced osteoblast apoptosis by curcumin is associated with preservation of mitochondrial functions and increased Akt-GSK3beta signaling. Cell. Physiol. Biochem. 41, 661-677. https://doi.org/10.1159/000457945
  9. Greenblatt, M. B., Shim, J. H., Zou, W., Sitara, D., Schweitzer, M., Hu, D., Lotinun, S., Sano, Y., Baron, R., Park, J. M., Arthur, S., Xie, M., Schneider, M. D., Zhai, B., Gygi, S., Davis, R. and Glimcher, L. H. (2010) The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J. Clin. Invest. 120, 2457-2473. https://doi.org/10.1172/JCI42285
  10. Han, D., Chen, W., Gu, X., Shan, R., Zou, J., Liu, G., Shahid, M., Gao, J. and Han, B. (2017) Cytoprotective effect of chlorogenic acid against hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells through PI3K/Akt-mediated Nrf2/HO-1 signaling pathway. Oncotarget 8, 14680-14692.
  11. Higuchi, M., Celino, F. T., Shimizu-Yamaguchi, S., Miura, C. and Miura, T. (2012) Taurine plays an important role in the protection of spermatogonia from oxidative stress. Amino Acids 43, 2359-2369. https://doi.org/10.1007/s00726-012-1316-9
  12. Hu, D., Bi, X., Fang, W., Han, A. and Yang, W. (2009) GSK3b is involved in JNK2-mediated b-catenin inhibition. PLoS ONE 4, e6640. https://doi.org/10.1371/journal.pone.0006640
  13. Jang, H. J., Hong, E. M., Kim, M., Kim, J. H., Jang, J., Park, S. W., Byun, H. W., Koh, D. H., Choi, M. H., Kae, S. H. and Lee, J. (2016) Simvastatin induces heme oxygenase-1 via NF-E2-related factor 2 (Nrf2) activation through ERK and PI3K/Akt pathway in colon cancer. Oncotarget 7, 46219-46229.
  14. Jang, H. J. and Kim, S. J. (2013) Taurine exerts anti-osteoclastogenesis activity via inhibiting ROS generation, JNK phosphorylation and COX-2 expression in RAW264.7 cells. J. Recept. Signal Transduct. Res. 33, 387-391. https://doi.org/10.3109/10799893.2013.839999
  15. Kim, H. Y., Yoon, J. Y., Yun, J. H., Cho, K. W., Lee, S. H., Rhee, Y. M., Jung, H. S., Lim, H. J., Lee, H., Choi, J., Heo, J. N., Lee, W., No, K. T., Min, D. and Choi, K. Y. (2015) CXXC5 is a negative-feedback regulator of the Wnt/beta-catenin pathway involved in osteoblast differentiation. Cell Death Differ. 22, 912-920. https://doi.org/10.1038/cdd.2014.238
  16. Koizumi, Y., Nagai, K., Gao, L., Koyota, S., Yamaguchi, T., Natsui, M., Imai, Y., Hasumi, K., Sugiyama, T. and Kuba, K. (2018) Involvement of RSK1 activation in malformin-enhanced cellular fibrinolytic activity. Sci. Rep. 8, 5472. https://doi.org/10.1038/s41598-018-23745-0
  17. Lee, H. S., Lee, G. S., Kim, S. H., Kim, H. K., Suk, D. H. and Lee, D. S. (2014) Anti-oxidizing effect of the dichloromethane and hexane fractions from Orostachys japonicus in LPS-stimulated RAW 264.7 cells via upregulation of Nrf2 expression and activation of MAPK signaling pathway. BMB Rep. 47, 98-103. https://doi.org/10.5483/BMBRep.2014.47.2.088
  18. Li, S. T., Chen, N. N., Qiao, Y. B., Zhu, W. L., Ruan, J. W. and Zhou, X. Z. (2016) SC79 rescues osteoblasts from dexamethasone though activating Akt-Nrf2 signaling. Biochem. Biophys. Res. Commun. 479, 54-60. https://doi.org/10.1016/j.bbrc.2016.09.027
  19. Lin, P., Tian, X. H., Yi, Y. S., Jiang, W. S., Zhou, Y. J. and Cheng, W. J. (2015) Luteolin-induced protection of H(2)O(2)-induced apoptosis in PC12 cells and the associated pathway. Mol. Med. Rep. 12, 7699-7704. https://doi.org/10.3892/mmr.2015.4400
  20. Liu, W. D., Mao, L., Ji, F., Chen, F. L., Hao, Y. D. and Liu, G. (2017) Targeted activation of AMPK by GSK621 ameliorates H2O2-induced damages in osteoblasts. Oncotarget 8, 10543-10552.
  21. Matsushita, T., Chan, Y. Y., Kawanami, A., Balmes, G., Landreth, G. E. and Murakami, S. (2009) Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol. Cell. Biol. 29, 5843-5857. https://doi.org/10.1128/MCB.01549-08
  22. Nguyen, T., Nioi, P. and Pickett, C. B. (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284, 13291-13295. https://doi.org/10.1074/jbc.R900010200
  23. Nusse, R. and Clevers, H. (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985-999. https://doi.org/10.1016/j.cell.2017.05.016
  24. Pisoschi, A. M. and Pop, A. (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur. J. Med. Chem. 97, 55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
  25. Qiao, X., Nie, Y., Ma, Y., Chen, Y., Cheng, R., Yin, W., Hu, Y., Xu, W. and Xu, L. (2016) Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci. Rep. 6, 18732. https://doi.org/10.1038/srep18732
  26. Roman-Garcia, P., Quiros-Gonzalez, I., Mottram, L., Lieben, L., Sharan, K., Wangwiwatsin, A., Tubio, J., Lewis, K., Wilkinson, D., Santhanam, B., Sarper, N., Clare, S., Vassiliou, G. S., Velagapudi, V. R., Dougan, G. and Yadav, V. K. (2014) Vitamin B(1)(2)-dependent taurine synthesis regulates growth and bone mass. J. Clin. Invest. 124, 2988-3002. https://doi.org/10.1172/JCI72606
  27. Shim, J. H., Greenblatt, M. B., Zou, W., Huang, Z., Wein, M. N., Brady, N., Hu, D., Charron, J., Brodkin, H. R., Petsko, G. A., Zaller, D., Zhai, B., Gygi, S., Glimcher, L. H. and Jones, D. C. (2013) Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. J. Clin. Invest. 123, 4010-4022. https://doi.org/10.1172/JCI69443
  28. Soares-Silva, M., Diniz, F. F., Gomes, G. N. and Bahia, D. (2016) The mitogen-activated protein kinase (MAPK) pathway: role in immune evasion by trypanosomatids. Front. Microbiol. 7, 183.
  29. Son, H. Y., Kim, H. and Y, H. K. (2007) Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. J. Nutr. Sci. Vitaminol. (Tokyo) 53, 324-330. https://doi.org/10.3177/jnsv.53.324
  30. Suzuki, T. and Yamamoto, M. (2015) Molecular basis of the Keap1-Nrf2 system. Free Radic. Biol. Med. 88, 93-100. https://doi.org/10.1016/j.freeradbiomed.2015.06.006
  31. Tapia, J. C., Torres, V. A., Rodriguez, D. A., Leyton, L. and Quest, A. F. (2006) Casein kinase 2 (CK2) increases survivin expression via enhanced beta-catenin-T cell factor/lymphoid enhancer binding factor-dependent transcription. Proc. Natl. Acad. Sci. U.S.A. 103, 15079-15084. https://doi.org/10.1073/pnas.0606845103
  32. Wauquier, F., Leotoing, L., Coxam, V., Guicheux, J. and Wittrant, Y. (2009) Oxidative stress in bone remodelling and disease. Trends Mol. Med. 15, 468-477. https://doi.org/10.1016/j.molmed.2009.08.004
  33. Wong, S. Y., Tan, M. G., Wong, P. T., Herr, D. R. and Lai, M. K. (2016) Andrographolide induces Nrf2 and heme oxygenase 1 in astrocytes by activating p38 MAPK and ERK. J. Neuroinflammation 13, 251. https://doi.org/10.1186/s12974-016-0723-3
  34. Yang, Y., Zhang, Y., Wang, L. and Lee, S. (2017) Levistolide A induces apoptosis via ros-mediated ER stress pathway in colon cancer cells. Cell. Physiol. Biochem. 42, 929-938. https://doi.org/10.1159/000478647
  35. Yee, C. S., Manilay, J. O., Chang, J. C., Hum, N. R., Murugesh, D. K., Bajwa, J., Mendez, M. E., Economides, A. E., Horan, D. J., Robling, A. G. and Loots, G. G. (2018) Conditional Deletion of Sost in MSC-derived lineages Identifies Specific Cell Type Contributions to Bone Mass and B Cell Development. J. Bone Miner. Res. doi:10.1002/jbmr.3467 [Epub ahead of print].
  36. Zhang, L.-Y., Zhou, Y.-Y., Chen, F., Wang, B., Li, J., Deng, Y.-W., Liu, W. D., Wang, Z. G., Li, Y. W., Li, D. Z., Lv, G. H. and Yin, B.-L. (2011) Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway. Braz. J. Med. Biol. Res. 44, 618-623. https://doi.org/10.1590/S0100-879X2011007500078
  37. Zou, W., Greenblatt, M. B., Shim, J. H., Kant, S., Zhai, B., Lotinun, S., Brady, N., Hu, D. Z., Gygi, S. P., Baron, R., Davis, R. J., Jones, D. and Glimcher, L. H. (2011) MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice. J. Clin. Invest. 121, 4383-4392. https://doi.org/10.1172/JCI59041

Cited by

  1. Diagnostic Value of HLA Typing in Pathogenesis of Cardiomyopathy vol.19, pp.2, 2018, https://doi.org/10.2174/1871529x19666181205151340
  2. Taurine attenuates isoproterenol-induced H9c2 cardiomyocytes hypertrophy by improving antioxidative ability and inhibiting calpain-1-mediated apoptosis vol.469, pp.1, 2018, https://doi.org/10.1007/s11010-020-03733-7
  3. New solutions for old challenges in glaucoma treatment: is taurine an option to consider? vol.16, pp.5, 2018, https://doi.org/10.4103/1673-5374.297059
  4. Protection of Icariin Against Hydrogen Peroxide‐Induced MC3T3‐E1 Cell Oxidative Damage vol.13, pp.2, 2018, https://doi.org/10.1111/os.12891
  5. Protective role of taurine against oxidative stress (Review) vol.24, pp.2, 2021, https://doi.org/10.3892/mmr.2021.12242
  6. Protective effects of non‐thermal plasma on triethylene glycol dimethacrylate‐induced damage in odontoblast‐like MDPC‐23 cells vol.54, pp.9, 2018, https://doi.org/10.1111/iej.13541