DOI QR코드

DOI QR Code

Inhibition of the Expression of Matrix Metalloproteinases in Articular Chondrocytes by Resveratrol through Affecting Nuclear Factor-Kappa B Signaling Pathway

  • Kang, Dong-Geun (Department of Orthopaedic Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine) ;
  • Lee, Hyun Jae (Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University) ;
  • Lee, Choong Jae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Park, Jin Sung (Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine)
  • Received : 2018.07.16
  • Accepted : 2018.09.18
  • Published : 2018.11.01

Abstract

In the present study, we tried to examine whether resveratrol regulates the expression of matrix metalloproteinases (MMPs) through affecting nuclear factor-kappa B ($NF-{\kappa}B$) in articular chondrocytes. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-${\beta}$ ($IL-1{\beta}$)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. Effect of resveratrol on $IL-1{\beta}$-induced secretion of MMP-3 was investigated in rabbit articular chondrocytes using western blot analysis. To elucidate the action mechanism of resveratrol, effect of resveratrol on $IL-1{\beta}$-induced $NF-{\kappa}B$ signaling pathway was investigated in SW1353, a human chondrosarcoma cell line, by western blot analysis. The results were as follows: (1) resveratrol inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) resveratrol reduced the secretion of MMP-3; (3) resveratrol inhibited $IL-1{\beta}$induced activation (phosphorylation) of inhibitory kappa B kinase (IKK), and thus phosphorylation and degradation of inhibitory kappa $B{\alpha}$ ($I{\kappa}B{\alpha}$); (4) resveratrol inhibited $IL-1{\beta}$-induced phosphorylation and nuclear translocation of $NF-{\kappa}B$ p65. This, in turn, led to the down-regulation of gene expression of MMPs in SW1353 cells. These results suggest that resveratrol can regulate the expression of MMPs through affecting $NF-{\kappa}B$ by directly acting on articular chondrocytes.

Keywords

References

  1. Aida, Y., Maeno, M., Suzuki, N., Shiratsuchi, H., Motohashi, M. and Matsumura, H. (2005) The effect of IL-1${\beta}$ on the expression of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in human chondrocytes. Life Sci. 77, 3210-3221. https://doi.org/10.1016/j.lfs.2005.05.052
  2. Aigner, T. and McKenna, L. (2002) Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol. Life Sci. 59, 5-18. https://doi.org/10.1007/s00018-002-8400-3
  3. Birkedal-Hansen, H., Moore, W. G. and Bodden, M. K. (1993) Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 4, 197-250. https://doi.org/10.1177/10454411930040020401
  4. Bonnet, C. S. and Walsh, D. A. (2005) Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford) 44, 7-16. https://doi.org/10.1093/rheumatology/keh344
  5. Buhrmann, C., Popper, B., Aggarwal, B. B. and Shakibaei, M. (2017) Resveratrol downregulates inflammatory pathway activated by lymphotoxin ${\alpha}$ (TNF-${\beta}$) in articular chondrocytes: comparison with TNF-${\alpha}$. PLoS ONE 12, e0186993. https://doi.org/10.1371/journal.pone.0186993
  6. Burrage, P. S., Mix, K. S. and Brinckerhoff, C. E. (2006) Matrix metalloproteinases:role in arthritis. Front. Biosci. 11, 529-543. https://doi.org/10.2741/1817
  7. Busch, F., Mobasheri. A., Shayan, P., Lueders, C., Stahlmann, R. and Shakibaei, M. (2012) Resveratrol modulates interleukin-1${\beta}$-induced phosphatidylinositol 3-kinase and nuclear factor ${\kappa}$B signaling pathways in human tenocytes. J. Biol. Chem. 287, 38050-38063. https://doi.org/10.1074/jbc.M112.377028
  8. Chen, W. N., Liu, L. L., Jiao, B. Y., Lin, W. S., Lin, X. J. and Lin, X. (2015) Hepatitis B virus X protein increases the IL-1${\beta}$-induced NF-${\kappa}$B activation via interaction with evolutionarily conserved signaling intermediate in Toll pathways (ECSIT). Virus Res. 195, 236-245. https://doi.org/10.1016/j.virusres.2014.10.025
  9. Chinnaiyan, A. M., O'Rourke, K., Tewari, M. and Dixit, V. M. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512. https://doi.org/10.1016/0092-8674(95)90071-3
  10. Daverey, A. and Agrawal, S. K. (2018) Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress. Brain Res. 1692, 45-55. https://doi.org/10.1016/j.brainres.2018.05.001
  11. Dean, D. D., Martel-Pelletier, J., Pelletier, J. P., Howell, D. S. and Woessner, J. F., Jr. (1989) Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J. Clin. Invest. 84, 678-685. https://doi.org/10.1172/JCI114215
  12. Echtermeyer, F., Bertrand, J. and Dreier, R. (2009) Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med. 15, 1072-1076. https://doi.org/10.1038/nm.1998
  13. Freemont, A. J., Hampson, V., Tilman, R., Goupille, P., Taiwo, Y. and Hoyland, J. A. (1997) Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann. Rheum. Dis. 56, 542-549. https://doi.org/10.1136/ard.56.9.542
  14. Garnero, P., Rousseau, J. C. and Delmas, P. D. (2000) Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum. 43, 953-968. https://doi.org/10.1002/1529-0131(200005)43:5<953::AID-ANR1>3.0.CO;2-Q
  15. Goldring, M. B., Otero, M., Tsuchimochi, K., Ijiri, K. and Li, Y. (2008) Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann. Rheum. Dis. 67, iii75-iii82.
  16. Goupille, P., Jayson, M. I., Valat, J. P. and Freemont, A. J. (1998) Matrix metalloproteinases: the clue to intervertebral disc degeneration? Spine 23, 1612-1626. https://doi.org/10.1097/00007632-199807150-00021
  17. Gu, H., Jiao, Y., Yu, X., Li, X., Wang, W., Ding, L. and Liu, L. (2017) Resveratrol inhibits the IL-1${\beta}$-induced expression of MMP-13 and IL-6 in human articular chondrocytes via TLR4/MyD88-dependent and -independent signaling cascades. Int. J. Mol. Med. 39, 734-740. https://doi.org/10.3892/ijmm.2017.2885
  18. Hsu, H., Huang, J., Shu, H. B., Baichwal, V. and Goeddel, D. V. (1996) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4, 387-396. https://doi.org/10.1016/S1074-7613(00)80252-6
  19. Hsu, H., Xiong, J. and Goeddel, D. V. (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-${\kappa}$B activation. Cell 81, 495-504. https://doi.org/10.1016/0092-8674(95)90070-5
  20. Jayaraman, P., Sada-Ovalle, I., Nishimura, T., Anderson, A. C., Kuchroo, V. K., Remold, H. G. and Behar, S. M. (2013) IL-1${\beta}$ promotes antimicrobial immunity in macrophages by regulating TNF receptor signaling and caspase-3 activation. J. Immunol. 190, 4196-4204. https://doi.org/10.4049/jimmunol.1202688
  21. Jeong, J. W., Lee, H. H., Choi, E. O., Lee, K. W., Kim, K. Y., Kim, S. G., Hong, S. H., Kim, G. Y., Park, C., Kim, H. K., Choi, Y. W. and Choi, Y. H. (2015) Schisandrae Fructus Inhibits IL-1${\beta}$-Induced Matrix Metalloproteinases and Inflammatory Mediators Production in SW1353 Human Chondrocytes by Suppressing NF-${\kappa}$B and MAPK Activation. Drug Dev. Res. 76, 474-483. https://doi.org/10.1002/ddr.21283
  22. Ji, B., Guo, W., Ma, H., Xu, B., Mu, W., Zhang, Z., Amat, A. and Cao, L. (2017) Isoliquiritigenin suppresses IL-1${\beta}$ induced apoptosis and inflammation in chondrocyte-like ATDC5 cells by inhibiting NF-${\kappa}$B and exerts chondroprotective effects on a mouse model of anterior cruciate ligament transection. Int. J. Mol. Med. 40, 1709-1718.
  23. Jo, H., Park, J. S. and Kim, E. M. (2003) The in vitro effects of dehydroepiandrosterone on human osteoarthritic chondrocytes. Osteoarthr. Cartil. 11, 585-594. https://doi.org/10.1016/S1063-4584(03)00094-3
  24. Kang, B. J., Ryu, J., Lee, C. J. and Hwang, S. C. (2014) Luteolin inhibits the activity, secretion and gene expression of MMP-3 in cultured articular chondrocytes and production of MMP-3 in the rat knee. Biomol. Ther. (Seoul) 22, 239-245. https://doi.org/10.4062/biomolther.2014.020
  25. Kanyama, M., Kuboki, T. and Kojima, S. (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids of patients with temporomandibular joint osteoarthritis. J. Orofac. Pain 14, 20-30.
  26. Kobayashi, M., Squires, G. R. and Mousa, A. (2005) Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 52, 128-135. https://doi.org/10.1002/art.20776
  27. Kullich, W., Fagerer, N. and Schwann, H. (2007) Effect of the NSAID nimesulide on the radical scavenger glutathione S-transferase in patients with osteoarthritis of the knee. Curr. Med. Res. Opin. 23, 1981-1986. https://doi.org/10.1185/030079907X223486
  28. Lijnen, H. R. (2002) Matrix metalloproteinases and cellular fibrinolytic proteolytic activity. Biochemistry Mosc. 67, 92-98. https://doi.org/10.1023/A:1013908332232
  29. Lin, P. M., Chen, C. T. and Torzilli, P. A. (2004) Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthr. Cartil. 12, 485-496. https://doi.org/10.1016/j.joca.2004.02.012
  30. Little, C. B., Barai, A. and Burkhardt, D. (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723-3733. https://doi.org/10.1002/art.25002
  31. Liu, L., Gu, H., Liu, H., Jiao, Y., Li, K., Zhao, Y., An, L. and Yang, J. (2014) Protective effect of resveratrol against IL-1${\beta}$-induced inflammatory response on human osteoarthritic chondrocytes partly via the TLR4/MyD88/NF-${\kappa}$B signaling pathway: an "in vitro study". Int. J. Mol. Sci. 15, 6925-6940. https://doi.org/10.3390/ijms15046925
  32. Loeser, R. F. (2006) Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators and aging collide. Arthritis Rheum. 54, 1357-1360. https://doi.org/10.1002/art.21813
  33. Lu, S., Xiao, X. and Cheng, M. (2015) Matrine inhibits IL-1${\beta}$-induced expression of matrix metalloproteinases by suppressing the activation of MAPK and NF-${\kappa}$B in human chondrocytes in vitro. Int. J. Clin. Exp. Pathol. 8, 4764-4772.
  34. Maepa, M., Razwinani, M. and Motaung, S. (2016) Effects of resveratrol on collagen type II protein in the superficial and middle zone chondrocytes of porcine articular cartilage. J. Ethnopharmacol. 178, 25-33. https://doi.org/10.1016/j.jep.2015.11.047
  35. Mankin, H. J. (1982) The response for articular cartilage to mechanical injury. J. Bone Joint Surg. Am. 64, 460-466. https://doi.org/10.2106/00004623-198264030-00022
  36. Moon, P. D., Jeong, H. S., Chun, C. S. and Kim, H. M. (2011) Baekjeolyusin-tang and its active component berberine block the release of collagen and proteoglycan from IL-1${\beta}$-stimulated rabbit cartilage and down-regulate matrix metalloproteinases in rabbit chondrocytes. Phytother. Res. 25, 844-850. https://doi.org/10.1002/ptr.3353
  37. Nam, D. C., Kim, B. K., Lee, H. J., Shin, H. D., Lee, C. J. and Hwang, S. C. (2016) Effects of prunetin on the proteolytic activity, secretion and gene expression of MMP-3 in vitro and production of MMP-3 in vivo. Korean J. Physiol. Pharmacol. 20, 221-228. https://doi.org/10.4196/kjpp.2016.20.2.221
  38. Neuhold, L. A., Killar, L. and Zhao, W. (2001) Postnatal expression in hyaline cartilage of constitutively active human collagenase-3 (MMP-13) induces osteoarthritis in mice. J. Clin. Invest. 107, 35-44. https://doi.org/10.1172/JCI10564
  39. Pan, Y., Zhang, H., Zheng, Y., Zhou, J., Yuan, J., Yu, Y. and Wang, J. (2017) Resveratrol exerts antioxidant effects by activating SIRT2 to deacetylate Prx1. Biochemistry 56, 6325-6328. https://doi.org/10.1021/acs.biochem.7b00859
  40. Pantsulaia, I., Kalichman, L. and Kobyliansky, E. (2010) Association between radiographic hand osteoarthritis and RANKL, OPG and inflammatory markers. Osteoarthr. Cartil. 18, 1448-1453. https://doi.org/10.1016/j.joca.2010.06.009
  41. Park, J. S., Kim, D. K., Shin, H. D., Lee, H. J., Jo, H. S., Jeong, J. H., Choi, Y. L., Lee, C. J. and Hwang, S. C. (2016) Apigenin regulates interleukin-1${\beta}$-induced production of matrix metalloproteinase both in the knee joint of rat and in primary cultured articular chondrocytes. Biomol. Ther. (Seoul) 24, 163-170. https://doi.org/10.4062/biomolther.2015.217
  42. Park, J. S., Lee, H. J., Lee, D. Y., Jo, H. S., Jeong, J. H., Kim, D. H., Nam, D. C., Lee, C. J. and Hwang, S. C. (2015) Chondroprotective effects of wogonin in experimental models of osteoarthritis in vitro and in vivo. Biomol. Ther. (Seoul) 23, 442-448. https://doi.org/10.4062/biomolther.2015.045
  43. Piao, T., Ma, Z., Li, X. and Liu, J. (2015) Taraxasterol inhibits IL-1${\beta}$-induced inflammatory response in human osteoarthritic chondrocytes. Eur. J. Pharmacol. 756, 38-42. https://doi.org/10.1016/j.ejphar.2015.03.012
  44. Shakibaei, M., Csaki, C., Nebrich, S. and Mobasheri, A. (2008) Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem. Pharmacol. 76, 1426-1439. https://doi.org/10.1016/j.bcp.2008.05.029
  45. Stanger, B. Z., Leder, P., Lee, T. H., Kim, E. and Seed, B. (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81, 513-523. https://doi.org/10.1016/0092-8674(95)90072-1
  46. Stanton, H., Rogerson, F. M. and East, C. J. (2005) ADAMTS-5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648-652. https://doi.org/10.1038/nature03417
  47. Wiedemann, J., Rashid, K. and Langmann, T. (2018) Resveratrol induces dynamic changes to the microglia transcriptome, inhibiting inflammatory pathways and protecting against microglia-mediated photoreceptor apoptosis. Biochem. Biophys. Res. Commun. 501, 239-245. https://doi.org/10.1016/j.bbrc.2018.04.223
  48. Xiao, K., Xuan, L., Xu, Y. and Bai, D. (2000) Stilbene glycoside sulfates from Polygonum cuspidatum. J. Nat. Prod. 63, 1373-1376. https://doi.org/10.1021/np000086+
  49. Yoshihara, Y., Nakamura, H. and Obata, K. (2000) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis. 59, 455-461. https://doi.org/10.1136/ard.59.6.455
  50. Zhou, K., Hu, L., Liao, W., Yin, D. and Rui, F. (2016) Coptisine prevented IL-${\beta}$-induced expression of inflammatory mediators in chondrocytes. Inflammation 39, 1558-1565. https://doi.org/10.1007/s10753-016-0391-6

Cited by

  1. Expression of Ihh signaling pathway in condylar cartilage after bite-raising in adult rats vol.50, pp.5, 2018, https://doi.org/10.1007/s10735-019-09840-0
  2. Natural Products as Sources of Novel Drug Candidates for the Pharmacological Management of Osteoarthritis: A Narrative Review vol.27, pp.6, 2018, https://doi.org/10.4062/biomolther.2019.139
  3. Polyphenols as Potential Agents in the Management of Temporomandibular Disorders vol.10, pp.15, 2018, https://doi.org/10.3390/app10155305
  4. Resveratrol alleviates the interleukin-1β-induced chondrocytes injury through the NF-κB signaling pathway vol.15, pp.None, 2020, https://doi.org/10.1186/s13018-020-01944-8
  5. Emerging Natural-Product-Based Treatments for the Management of Osteoarthritis vol.10, pp.2, 2018, https://doi.org/10.3390/antiox10020265
  6. Acetylated Resveratrol and Oxyresveratrol Suppress UVB-Induced MMP-1 Expression in Human Dermal Fibroblasts vol.10, pp.8, 2018, https://doi.org/10.3390/antiox10081252