DOI QR코드

DOI QR Code

Application of the Empirical Orthogonal Functions on the GRACE Spherical Harmonic Solutions

  • Eom, Jooyoung (Department of Earth Science Education, Kyungpook National University) ;
  • Seo, Ki-Weon (Department of Earth Science Education, Seoul National University)
  • Received : 2018.08.02
  • Accepted : 2018.10.02
  • Published : 2018.10.31

Abstract

During the period of 2002 to 2017, the Gravity Recovery And Climate Experiment (GRACE) had observed time-varying gravity changes with unprecedented accuracy. The GRACE science data centers provide the monthly gravity solutions after removing the sub-monthly mass fluctuation using geophysical models. However, model misfit makes the solutions to be contaminated by aliasing errors, which exhibits peculiar north-south stripes. Two conventional filters are used to reduce the errors, but signals with similar spatial patterns to the errors are also removed during the filtering procedure. This would be particularly problematic for estimating the ice mass changes in Western Antarctic Ice Sheet (WAIS) and Antarctic Peninsula (AP) due to their similar spatial pattern to the elongated north-south direction. In this study, we introduce an alternative filter to remove aliasing errors using the Empirical Orthogonal Functions (EOF) analysis. EOF can decompose data into different modes, and thus is useful to separate signals from noise. Therefore, the aliasing errors are effectively suppressed through EOF method. In particular, the month-to-month mass changes in WAIS and AP, which have been significantly contaminated by aliasing errors, can be recovered using EOF method.

Keywords

References

  1. A, G., Wahr, J., and Zhong, S., 2013, Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to glacial isostatic adjustment in Antarctica and Canada, Geophysical Journal International, 192(2), 557-572, doi:10.1093/gji/ggs030.
  2. Alsdorf, D.E., Han, S.C., Bates P., and Melack J., 2010, Seasonal water storage on the Amazon floodplain measured from satellites, Remote Sensing of Environment, 114(11), 2448-2456, doi:10.1016/J.Rse.2010.05.020.
  3. Bettadpur, S., 2012, CSR level-2 processing standards document for level-2 product release 05.
  4. Cazenave, A., and Chen, J., 2010, Time-variable gravity from space and present-day mass redistribution in the Earth system, Earth and Planetary Science Letters, 298, 263-274, doi:10.1016/j.epsl.2010.07.035.
  5. Chen, J.L., Wilson, C.R., 2008, Low degree gravitational changes from GRACE, Earth rotation, geophysical models, and satellite laser ranging. Journal of Geophysical Research, 113, B06402. doi:10.1029/2007JB005397
  6. Chen, J. L., Wilson, C.R., and Tapley, B.D., 2013, Contribution of ice sheet and mountain glacier melt to recent sea level rise, Nature Geoscience, 6(7), 549-552, doi:10.1038/ngeo1829.
  7. Cheng, M., and Tapley, B.D., 2004, Variations in the Earth's oblateness during the past 28 years, Journal of Geophysical Research, 109, B09402, doi:10.1029/2004JB003028.
  8. Dunn, C, Bertiger, W., Bar-Sever, Y., Desai, S., Haines, B., Kuang, D., Franklin, G., Harris, I., Kruizinga, G., Meehan, T., Nandi, S., Nguyen, D., Rogstad, T., Thomas, J.B., Tien, J., Romans, L., Watkins, M., Wu, S.C., Bettadpur, S., Kim, J., 2003, Instrument of GRACE: GPS augments gravity measurements. GPS World, 14, 16-28.
  9. Eom, J., Seo, K.-W., Lee, C.-K., and Wilson, C.R., 2017a, Correlated error reduction in GRACE data over Greenland using extended empirical orthogonal functions, Journal of Geophysical Research: Solid Earth, 122, doi:10.1002/2017JB014379.
  10. Eom, J., Seo, K.-W., and Ryu D., 2017b, Estimation of Amazon River discharge based on EOF analysis of GRACE gravity data, Remote Sensing of Environment, 191, 55-66, doi:10.1016/j.rse.2017.01.011.
  11. Hannachi, A., Jolliffe, I.T., and Stephenson D.B., 2007, Empirical orthogonal functions and related techniques in atmospheric science: A review, International Journal of Climatology, 27(9), 1119-1152, doi:10.1002/joc.1499.
  12. Harig, C., and Simons F.J., 2012, Mapping Greenland's mass loss in space and time, Proceding of the National Academy of Science of the United States of America, 109(49), 19934-19937, doi:10.1073/pnas.1206785109.
  13. Hurrell, J.W., and Van Loon, H., 1997, Decadal variations in climate associated with the North Atlantic Oscillation, in Diaz, H.F., Beniston, M., and Bradley, R.S. (eds.), Climatic Change at High Elevation Sites, Springer Netherlands, Dordrecht, 69-94, doi:10.1007/978-94-015-8905-5_4.
  14. IMBIE, 2018, Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558(7709), 219-222, doi:10.1038/s41586-018-0179-y.
  15. IPCC, 2014, Mitigation of climate change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York, USA.
  16. Jekeli, C., 1981, Alternative methods to smooth the Earth's gravity field, Report No.327, Department Of Geodetic Science, Ohio State University, Ohio, USA, 28 p.
  17. Kim, B.-H., Eom, J., Seo, K.-W., and Wilson, C.R., 2016, Spurious barometric pressure acceleration in Antarctica and propagation into GRACE Antarctic mass change estimates, Geophysical Journal International, 206(2), 1306-1314, doi:10.1093/gji/ggw211.
  18. Leuliette, E.W., and Miller, L., 2009, Closing the sea level rise budget with altimetry, Argo, and GRACE, Geophysical Research Letters, 36, L04608, doi:10.1029/2008GL036010.
  19. Llovel, W., Willis, J.K., Landerer, F.W., and Fukumori, I., 2014, Deep-ocean contribution to sea level and energy budget not detectable over the past decade, Nature Climate Change, 4(11), 1031-1035, doi:10.1038/nclimate2387.
  20. Longuevergne, L., Scanlon, B.R., and Wilson, C.R., 2010, GRACE hydrological estimates for small basins: evaluating processing approaches on the High Plains Aquifer, USA, Water Resources Research, 46, doi:10.1029/2009WR008564.
  21. Madden, R.A., and Julian, P.R., 1971, Detection of a 40-50 day oscillation in the zonal wind in the Tropical Pacific, Journal of the Atmospheric Sciences, 28(5), 702-708, doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.
  22. Makowski, J. K., Chambers, D.P., and Bonin, J.A., 2015, Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean, Journal of Geophysical Research: Oceans, 120(6), 4245-4259, doi:10.1002/2014JC010575.
  23. Reager, J. T., Thomas, B.F., and Famiglietti, J.S., 2014, River basin flood potential inferred using GRACE gravity observations at several months lead time, Nature Geoscience, 7(8), 588-592, doi:10.1038/ngeo2203.
  24. Retzlaff, R., and Bentley, C., 1993, Timing of stagnation of Ice Stream C, West Antarctica, from short-pulse radar studies of buried surface crevasses. Journal of Glaciology, 39(133), 553-561. doi:10.3189/S0022143000016440
  25. Seo, K.-W., Eom, J., Kwon, B.-D., 2014, Refinement of GRACE gravity model including Earth's mean mass variations, Journal of Korean Earth Science Society, 35(7), 537-542. https://doi.org/10.5467/JKESS.2014.35.7.537
  26. Seo, K.-W., Wilson, C., Ted, S., Kim, B.-M., Waliser, D., Tian, B., Kim, B.-H., and Eom, J., 2015, Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013, Journal of Geophysical Research: Solid Earth, 120, 3617-3627, doi:10.1002/2014JB011755.
  27. Swenson, S., and Wahr, J., 2006, Post-processing removal of correlated errors in GRACE data, Geophysical Research Letter, 33, L08402, doi:10.1029/2005gl025285.
  28. Swenson, S., Chambers, D., and Wahr, J., 2008, Estimating geocenter variations from a combination of GRACE and ocean model output, Journal of Geophysical Research, 113, B08410, doi:10.1029/2007jb005338.
  29. Tapley, B.D., Bettadpur, S., Watkins, M., and Reigber, C., 2004, The gravity recovery and climate experiment: Mission overview and early results, Geophysical Research Letter, 31, L09607, doi:10.1029/2004gl019920.
  30. Velicogna, I., and Wahr, J., 2005, Greenland mass balance from GRACE, Geophysical Research Letter, 32, L18505, doi:10.1029/2005gl023955.
  31. Velicogna, I., and Wahr, J., 2013, Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data, Geophysical Research Letters, 40(12), 3055-3063, doi:10.1002/grl.50527.
  32. Velicogna, I., Sutterley, T.C., and vanden Broeke, M.R., 2014, Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data, Geophysical Research Letters, 41(22), 8130-8137, doi:10.1002/2014GL061052.
  33. Wahr, J., Molenaar, M., and Bryan, F., 1998, Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE, Journal of Geophysical Research, 103, 30205-30229. https://doi.org/10.1029/98JB02844
  34. Wahr, J., Swenson, S., Zlotnicki, V., and Velicogna, I., 2004, Time-variable gravity from GRACE: First results, Geophysical Research Letter, 31, L11501, doi:10.1029/2004gl019779.
  35. Xiaolei, J., Yunzhong, S., and Zizhan, Z., 2014, GRACE RL05-based ice mass changes in the typical regions of Antarctica from 2004 to 2012, Geodesy and Geodynamics, 5(4), 57-67, doi:10.3724/SP.J.1246.2014.04057.