DOI QR코드

DOI QR Code

The Validation of MOHID Regional Ocean Circulation Model around the East Asian Seas in 2016

2016년 동아시아 해역의 MOHID 지역 해양 순환 모델 검증

  • Lee, Jae-Ho (Department of Earth Science Education, Kongju National University) ;
  • Lim, Byeong-Jun (Department of Earth Science Education, Kongju National University) ;
  • Kim, Do-Youn (Ara Consulting & Technology) ;
  • Park, Sang-Hoon (Ara Consulting & Technology) ;
  • Chang, You-Soon (Department of Earth Science Education, Kongju National University)
  • 이재호 (공주대학교 지구과학교육과) ;
  • 임병준 (공주대학교 지구과학교육과) ;
  • 김도연 ((주)아라종합기술) ;
  • 박상훈 ((주)아라종합기술) ;
  • 장유순 (공주대학교 지구과학교육과)
  • Received : 2018.03.10
  • Accepted : 2018.10.01
  • Published : 2018.10.31

Abstract

In this study, we apply a three-dimensional circulation model, MOHID (MOdelo $HIDrodin{\hat{a}}mico$), and reproduce oceanic variation around the East Asian seas including Korea in 2016. Simulation results are verified by using objective analysis fields (EN4, ARMOR3D, AVISO, and SIO products) and in-situ observation data (serial oceanographic and buoy data). Verification results show that general characteristics of the water temperature, sea level anomaly, surface velocity, and mixed layer depths simulated by MOHID are similar with those of the objective analysis fields in the East Asian seas. Especially, when buoy data in the coastal areas are compared, correlation coefficients of sea surface temperature and sea level anomaly are both over 0.8 and normalized standard deviations are between 0.85 and 1.15, respectively. However, it is analyzed that additional improvement would be necessary in the representation of thermocline structure in the East Sea and strong stratification phenomena in the Yellow and South Sea in summer.

본 연구에서는 3차원 순환 모델인 MOHID (MOdelo $HIDrodin{\hat{a}}mico$) 모델을 적용하여 한반도를 포함한 동아시아 해역의 2016년 해황 변동을 재현하였다. 재현 결과는 객관 분석장(EN4, ARMOR3D, AVISO, SIO 자료)과 현장 관측 자료(정선 해양 자료, 부이 자료)를 사용하여 검증하였다. 검증 결과 MOHID로 재현된 수온, 해면 고도 편차, 표층 유속 및 혼합 층 깊이 등의 전반적인 해황 구조가 동아시아 해역의 객관 분석 자료들과 유사하게 나타났다. 특히 연안의 부이 자료와 비교하였을 때, 표층 수온 및 해면 고도 편차의 상관 계수는 모두 0.8 이상이며, 표준화된 표준편차는 0.85-1.15의 값을 보였다. 그러나 여름철 동해의 수온 약층의 구조 및 황해와 남해의 강한 성층 현상 재현에 관한 추가적인 개선이 필요할 것으로 분석되었다.

Keywords

References

  1. An, H.S., 1977, A numerical experiment of the M2 tide in the Yellow Sea, Journal of Oceanogrphy, 33, 103-110.
  2. Backhaus, J.O. and Hainbucher, D., 1987, A finitedifference general circulation model for shelf seas and its application to low frequency variability on the North European Shelf, Elsevier Oceanography Series, 45, 221-244.
  3. Beardsley, R.C., Limeburner, R., Yu, H., Cannon, G.A., 1985, Discharge of the Changjiang (Yangtze River) into the East China Sea, Continental Shelf Research, 4, 57-76. https://doi.org/10.1016/0278-4343(85)90022-6
  4. Belkin, I.M., Cornillon, P.C., Sherman, K., 2009, Fronts in Large Marine Ecosystems, Progress in Oceanography, 81, 223-236. https://doi.org/10.1016/j.pocean.2009.04.015
  5. Bleck, R., 2002, An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Modelling, 4, 55-88. https://doi.org/10.1016/S1463-5003(01)00012-9
  6. Burchard, H., Bolding, K., and Villarreal, M.R., 1999, GOTM, a general ocean turbulence model, European Commission, 103.
  7. Chang, K.I., Zhang, C.I., Park, C., Kang, D.J., Ju, S.J., Lee, S.H. and Wimbush, M., 2016, Oceanography of the East Sea (Japan Sea). Springer, 460.
  8. Chang Y.S., 2015, Intercomparison of the global ocean reanalysis data, Journal of the Korean Society of Oceanography, 20, 102-118.
  9. Chassignet, E.P., Hurlburt, H.E., Smedstad, O.M., Halliwell, G.R., Hogan, P.J., Wallcraft, A.J., Baraille, R., and Bleck, R., 2007, The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system, Journal of Marine Systems, 65, 60-83. https://doi.org/10.1016/j.jmarsys.2005.09.016
  10. Chen, C.T.A., 2009, Chemical and physical fronts in the Bohai, Yellow and East China seas, Journal of Marine Systems, 78, 394-410. https://doi.org/10.1016/j.jmarsys.2008.11.016
  11. Chippada S., Dawson, C., Wheeler, M., 1998, Agodonovtype finite volume method for the system of shallow water equations, Computer methods in applied mechanics and engineering, 151, 105-130. https://doi.org/10.1016/S0045-7825(97)00108-4
  12. Choi, B.H., 1990, Development of Fine-grid Numerical Tidal Models of the Yellow Sea and the East china Sea, Journal of the Korean Society of Coastal and Ocean Engineers, 2, 231-244.
  13. Good, S.A., Martin, M.J., and Rayner, N.A., 2013, EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, Journal of Geophysical Research, 118, 6704-6716.
  14. Guinehut S., Dhomps, A.L. Larnicol, G., and Le Traon, P.Y., 2012, High resolution 3D temperature and salinity fields derived from in situ and satellite observations, Ocean Science Journal, 8, 845-857. https://doi.org/10.5194/os-8-845-2012
  15. Guinehut S., Le Traon, P.Y., Larnicol, G., and Philipps, S., 2004, Combining Argo and remote-sensing data to estimate the ocean three-dimensional temperature fields -A first approach based on simulated observations, Journal of Marine Systems, 46, 85-98. https://doi.org/10.1016/j.jmarsys.2003.11.022
  16. Holte, J., and Talley, L., 2009, A new algorithm for finding mixed layer depths with applications to Argo data and Subantarctic Mode Water formation, Journal of Atmospheric and Oceanic Technology, 26, 1920-1939. https://doi.org/10.1175/2009JTECHO543.1
  17. Holte, J., Talley, L., Gilson, J., and Roemmich, D., 2017, An Argo mixed layer climatology and database, Geophysical Research Letters, 44, 5618-5626. https://doi.org/10.1002/2017GL073426
  18. Isobe, A., 2008, Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves, Journal of Oceanography, 64, 569-584. https://doi.org/10.1007/s10872-008-0048-7
  19. Kim, D.Y, Park, J.S., Hyun, S.K., Kim, S.E., Kim, P.J., and Kim, S.M., 2012, Numerical Simulation of the Hydrodynamic and Sedimentation in the Northern Gyeonggi Bay, Proceeding of the society of naval architects of Korea, 2093-2096.
  20. Kim, K., Chang, K.I., Kang, D.J., Kim, Y.H., and Lee, J.H., 2008, Review of Recent Findings on the Water Masses and Circulation in the East Sea (Sea of Japan), Journal of Oceanography, 64, 721-735. https://doi.org/10.1007/s10872-008-0061-x
  21. Kim, Y.H., Choi, B.J., Lee, J.S., Byun, D.S., Kang, K.R., Kim, Y.G., and Cho, Y.K., 2013, Korean Ocean Forecasting System: Present and Future, Journal of the Korean Society of Oceanography, 18, 89-103.
  22. Large, W.G., and Pond, S., 1981, Open ocean momentum flux measurements in moderate to strong winds, Journal of Physical Oceanography, 11, 324-326. https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
  23. Leendertse, J.J., and Liu, S.K., 1978, A three-dimensional turbulent energy model for non-homogeneous estuaries and coastal sea systems, Hydrodynamics of Estuaries and Fjords, 387-405.
  24. Lee D.I., and Kim, J.K., 2007, Numerical simulation of residual currents and low salinity dispersions by Changjiang dischare in the Yellow Sea and the East China Sea., Journal of the Korean Society for Marine Environmental Engineering, 10, 67-85.
  25. Lie, H.J., and Cho, C.H., 1994, On the origin of the Tsushima Warm Current, Journal of Geophysical Research, 99, 25081-25091. https://doi.org/10.1029/94JC02425
  26. Lim B.J., and Chang, Y.S., 2016, Development of Synthetic Regression Diagram for Analyzing Linear Trend of Sea Surface Height, Temperature, and Salinity around the Korean Marginal Seas, Journal of the Korean Society of Oceanography, 21, 67-77.
  27. Martins, F., 1999, Modelacao matematica tridimensional de escoamentos costeiros e estuarinos usando uma Abordagem de Coordenada Vertical Generica, Universidade Tecnica de Lisboa, Instituto Superior Tecnico.
  28. Martins, F., Leitao, P., Silva, A., and Neves, R., 2000, 3D modeling in the Sado estuary using a new generic vertical discretization approach, Oceanologica Acta, 24, 51-62.
  29. Matsuno, T., Lee, J.S., Yanao, S., 2009, The Kuroshio exchange with the South and East China Seas, Ocean Science Journal, 5, 303-312. https://doi.org/10.5194/os-5-303-2009
  30. Mulet, S., Rio, M.H., Mignot, A., Guinehut, S., and Morrow, R., 2012, A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements, Deep Sea Research Part II: Topical Studies in Oceanography, 77, 70-81.
  31. Nihoul, J.C.J., 1984, A non-linear mathematical model for the transport and spreading of oil slicks, Ecological Modelling, 22, 325-339. https://doi.org/10.1016/0304-3800(84)90018-8
  32. Pacanowski, R.C., and Philander, S.G.H., 1981, Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans, Journal of Physical Oceanography, 1443-1451.
  33. Parent, L., Ferry, N., Barnier, B., and Garric, G., 2013, GLOBAL Eddy-Permitting Ocean Reanalyses and Simulations of the period 1992 to Present, Technical report, Mercator Ocean.
  34. Smagorinsky, J., 1963, General circulation experiments with the primitive equations, Part 1: the basic experiment, Monthly Weather Review, 91, 99-152. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  35. Su, J., 1998, Circulation dynamics of the China Seas north of $18\;^{\circ}$yN, The Global Coastal Ocean, 11, 483-505.
  36. Taylor, K.E., 2001, Summarizing multiple aspects of model performance in a single diagram, Journal of Geophysical Research, 106, 7183-7192. https://doi.org/10.1029/2000JD900719
  37. UNESCO, ICES, SCOR, IAPSO, 1981, Background papers and supporting data on the International Equation of state of Sea Water 1980, UNESCO technical papers in marine science, 38, 192.