DOI QR코드

DOI QR Code

The Imaging of Localization Related Symptomatic Epilepsies: The Value of Arterial Spin Labelling Based Magnetic Resonance Perfusion

  • Nagesh, Chinmay (Department of Imaging Sciences & Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST)) ;
  • Kumar, Savith (Department of Imaging Sciences & Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST)) ;
  • Menon, Ramshekhar (Comprehensive Epilepsy Centre, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST)) ;
  • Thomas, Bejoy (Department of Imaging Sciences & Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST)) ;
  • Radhakrishnan, Ashalatha (Comprehensive Epilepsy Centre, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST)) ;
  • Kesavadas, Chandrasekharan (Department of Imaging Sciences & Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences & Technology (SCTIMST))
  • Received : 2017.10.16
  • Accepted : 2018.03.19
  • Published : 2018.10.01

Abstract

Accurate identification of the epileptogenic zone is an important prerequisite in presurgical evaluation of refractory epilepsy since it affects seizure-free outcomes. Apart from structural magnetic resonance imaging (sMRI), delineation has been traditionally done with electroencephalography and nuclear imaging modalities. Arterial spin labelling (ASL) sequence is a non-contrast magnetic resonance perfusion technique capable of providing similar information. Similar to single-photon emission computed tomography, its utility in epilepsy is based on alterations in perfusion linked to seizure activity by neurovascular coupling. In this article, we discuss complementary value that ASL can provide in the evaluation and characterization of some basic substrates underlying epilepsy. We also discuss the role that ASL may play in sMRI negative epilepsy and acute scenarios such as status epilepticus.

Keywords

References

  1. Shorvon SD. The etiologic classification of epilepsy. Epilepsia 2011;52:1052-1057 https://doi.org/10.1111/j.1528-1167.2011.03041.x
  2. Koepp MJ, Woermann FG. Imaging structure and function in refractory focal epilepsy. Lancet Neurol 2005;4:42-53 https://doi.org/10.1016/S1474-4422(04)00965-2
  3. Woermann FG, Vollmar C. Clinical MRI in children and adults with focal epilepsy: a critical review. Epilepsy Behav 2009;15:40-49 https://doi.org/10.1016/j.yebeh.2009.02.032
  4. Tao JX, Baldwin M, Hawes-Ebersole S, Ebersole JS. Cortical substrates of scalp EEG epileptiform discharges. J Clin Neurophysiol 2007;24:96-100 https://doi.org/10.1097/WNP.0b013e31803ecdaf
  5. Shorvon S, Perucca E, Engel J Jr. The treatment of epilepsy, 4th ed. Hoboken, NJ: Wiley-Blackwell, 2015:714-715
  6. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 2008;29:1228-1234 https://doi.org/10.3174/ajnr.A1030
  7. Blumenfeld H, McNally KA, Vanderhill SD, Paige AL, Chung R, Davis K, et al. Positive and negative network correlations in temporal lobe epilepsy. Cereb Cortex 2004;14:892-902 https://doi.org/10.1093/cercor/bhh048
  8. Spencer SS. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 2002;43:219-227 https://doi.org/10.1046/j.1528-1157.2002.26901.x
  9. Englot DJ, Raygor KP, Molinaro AM, Garcia PA, Knowlton RC, Auguste KI, et al. Factors associated with failed focal neocortical epilepsy surgery. Neurosurgery 2014;75:648-656;discussion 655; quiz 656 https://doi.org/10.1227/NEU.0000000000000530
  10. Chassoux F, Artiges E, Semah F, Laurent A, Landre E, Turak B, et al. $^{18}F$-FDG-PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology 2017;88:1045-1053 https://doi.org/10.1212/WNL.0000000000003714
  11. Theodore WH. Presurgical focus localization in epilepsy: PET and SPECT. Semin Nucl Med 2017;47:44-53 https://doi.org/10.1053/j.semnuclmed.2016.09.008
  12. Kim BS, Lee ST, Yun TJ, Lee SK, Paeng JC, Jun J, et al. Capability of arterial spin labeling MR imaging in localizing seizure focus in clinical seizure activity. Eur J Radiol 2016;85:1295-1303 https://doi.org/10.1016/j.ejrad.2016.04.015
  13. Huneau C, Benali H, Chabriat H. Investigating human neurovascular coupling using functional neuroimaging: a critical review of dynamic models. Front Neurosci 2015;9:467
  14. Gaillard WD, Fazilat S, White S, Malow B, Sato S, Reeves P, et al. Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy. Neurology 1995;45:1841-1847 https://doi.org/10.1212/WNL.45.10.1841
  15. Hamandi K, Laufs H, Noth U, Carmichael DW, Duncan JS, Lemieux L. BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage 2008;39:608-618 https://doi.org/10.1016/j.neuroimage.2007.07.009
  16. Stefanovic B, Warnking JM, Kobayashi E, Bagshaw AP, Hawco C, Dubeau F, et al. Hemodynamic and metabolic responses to activation, deactivation and epileptic discharges. Neuroimage 2005;28:205-215 https://doi.org/10.1016/j.neuroimage.2005.05.038
  17. Pizzini FB, Farace P, Manganotti P, Zoccatelli G, Bongiovanni LG, Golay X, et al. Cerebral perfusion alterations in epileptic patients during peri-ictal and post-ictal phase: PASL vs DSCMRI. Magn Reson Imaging 2013;31:1001-1005 https://doi.org/10.1016/j.mri.2013.03.023
  18. Menon RN, Radhakrishnan A, Parameswaran R, Thomas B, Kesavadas C, Abraham M, et al. Does F-18 FDG-PET substantially alter the surgical decision-making in drugresistant partial epilepsy? Epilepsy Behav 2015;51:133-139 https://doi.org/10.1016/j.yebeh.2015.07.004
  19. Madan N, Grant PE. New directions in clinical imaging of cortical dysplasias. Epilepsia 2009;50 Suppl 9:9-18
  20. Jones AL, Cascino GD. Evidence on use of neuroimaging for surgical treatment of temporal lobe epilepsy: a systematic review. JAMA Neurol 2016;73:464-470 https://doi.org/10.1001/jamaneurol.2015.4996
  21. Gaillard WD, Zeffiro T, Fazilat S, DeCarli C, Theodore WH. Effect of valproate on cerebral metabolism and blood flow: an 18F-2-deoxyglucose and 15O water positron emission tomography study. Epilepsia 1996;37:515-521 https://doi.org/10.1111/j.1528-1157.1996.tb00602.x
  22. Guo X, Xu S, Wang G, Zhang Y, Guo L, Zhao B. Asymmetry of cerebral blood flow measured with three-dimensional pseudocontinuous arterial spin-labeling mr imaging in temporal lobe epilepsy with and without mesial temporal sclerosis. J Magn Reson Imaging 2015;42:1386-1397 https://doi.org/10.1002/jmri.24920
  23. Wolf RL, Alsop DC, Levy-Reis I, Meyer PT, Maldjian JA, Gonzalez-Atavales J, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 2001;22:1334-1341
  24. Storti SF, Boscolo Galazzo I, Del Felice A, Pizzini FB, Arcaro C, Formaggio E, et al. Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage 2014;102 Pt 1:49-59 https://doi.org/10.1016/j.neuroimage.2013.06.028
  25. Boscolo Galazzo I, Storti SF, Del Felice A, Pizzini FB, Arcaro C, Formaggio E, et al. Patient-specific detection of cerebral blood flow alterations as assessed by arterial spin labeling in drug-resistant epileptic patients. PLoS One 2015;10:e0123975 https://doi.org/10.1371/journal.pone.0123975
  26. Lim YM, Cho YW, Shamim S, Solomon J, Birn R, Luh WM, et al. Usefulness of pulsed arterial spin labeling MR imaging in mesial temporal lobe epilepsy. Epilepsy Res 2008;82:183-189 https://doi.org/10.1016/j.eplepsyres.2008.08.001
  27. Cianfoni A, Caulo M, Cerase A, Della Marca G, Falcone C, Di Lella GM, et al. Seizure-induced brain lesions: a wide spectrum of variably reversible MRI abnormalities. Eur J Radiol 2013;82:1964-1972 https://doi.org/10.1016/j.ejrad.2013.05.020
  28. Provenzale JM, Barboriak DP, VanLandingham K, MacFall J, Delong D, Lewis DV. Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis. AJR Am J Roentgenol 2008;190:976-983 https://doi.org/10.2214/AJR.07.2407
  29. Vattipally VR, Bronen RA. MR imaging of epilepsy: strategies for successful interpretation. Magn Reson Imaging Clin N Am 2006;14:225-247 https://doi.org/10.1016/j.mric.2006.06.006
  30. Bast T, Ramantani G, Seitz A, Rating D. Focal cortical dysplasia: prevalence, clinical presentation and epilepsy in children and adults. Acta Neurol Scand 2006;113:72-81 https://doi.org/10.1111/j.1600-0404.2005.00555.x
  31. Stanescu L, Ishak GE, Khanna PC, Biyyam DR, Shaw DW, Parisi MT. FDG PET of the brain in pediatric patients: imaging spectrum with MR imaging correlation. Radiographics 2013;33:1279-1303 https://doi.org/10.1148/rg.335125152
  32. Wintermark P, Lechpammer M, Warfield SK, Kosaras B, Takeoka M, Poduri A, et al. Perfusion imaging of focal cortical dysplasia using arterial spin labeling: correlation with histopathological vascular density. J Child Neurol 2013;28:1474-1482 https://doi.org/10.1177/0883073813488666
  33. Wissmeyer M, Altrichter S, Pereira VM, Viallon M, Federspiel A, Seeck M, et al. Arterial spin-labeling MRI perfusion in tuberous sclerosis: correlation with PET. J Neuroradiol 2010;37:127-130 https://doi.org/10.1016/j.neurad.2009.05.005
  34. Rintahaka PJ, Chugani HT, Messa C, Phelps ME. Hemimegalencephaly: evaluation with positron emission tomography. Pediatr Neurol 1993;9:21-28 https://doi.org/10.1016/0887-8994(93)90005-W
  35. Altrichter S, Pendse N, Wissmeyer M, Jagersberg M, Federspiel A, Viallon M, et al. Arterial spin-labeling demonstrates ictal cortical hyperperfusion in epilepsy secondary to hemimegalencephaly. J Neuroradiol 2009;36:303-305 https://doi.org/10.1016/j.neurad.2009.04.001
  36. Wintermark P, Roulet-Perez E, Maeder-Ingvar M, Moessinger AC, Gudinchet F, Meuli R. Perfusion abnormalities in hemimegalencephaly. Neuropediatrics 2009;40:92-96 https://doi.org/10.1055/s-0029-1237721
  37. Van Bogaert P, David P, Gillain CA, Wikler D, Damhaut P, Scalais E, et al. Perisylvian dysgenesis. Clinical, EEG, MRI and glucose metabolism features in 10 patients. Brain 1998;121(Pt 12):2229-2238 https://doi.org/10.1093/brain/121.12.2229
  38. De Volder AG, Gadisseux JF, Michel CJ, Maloteaux JM, Bol AC, Grandin CB, et al. Brain glucose utilization in band heterotopia: synaptic activity of "double cortex". Pediatr Neurol 1994;11:290-294 https://doi.org/10.1016/0887-8994(94)90003-5
  39. Seniaray N, Jain A. PET MRI coregistration in intractable epilepsy and gray matter heterotopia. Clin Nucl Med 2017;42:e171-e172 https://doi.org/10.1097/RLU.0000000000001506
  40. Conrad GR, Sinha P. FDG PET imaging of subependymal gray matter heterotopia. Clin Nucl Med 2005;30:35-36 https://doi.org/10.1097/00003072-200501000-00012
  41. Thom M, Blumcke I, Aronica E. Long-term epilepsy-associated tumors. Brain Pathol 2012;22:350-379 https://doi.org/10.1111/j.1750-3639.2012.00582.x
  42. Radhakrishnan A, Abraham M, Vilanilam G, Menon R, Menon D, Kumar H, et al. Surgery for “long-term epilepsy associated tumors (LEATs)”: seizure outcome and its predictors. Clin Neurol Neurosurg 2016;141:98-105 https://doi.org/10.1016/j.clineuro.2015.12.020
  43. Yeom KW, Mitchell LA, Lober RM, Barnes PD, Vogel H, Fisher PG, et al. Arterial spin-labeled perfusion of pediatric brain tumors. AJNR Am J Neuroradiol 2014;35:395-401 https://doi.org/10.3174/ajnr.A3670
  44. Hamer HM, Hong SB. Is an epilepsy presurgical evaluation necessary for mid-grade and high-grade brain tumors presenting with seizures? Epilepsia 2013;54 Suppl 9:56-60
  45. Josephson CB, Rosenow F, Al-Shahi Salman R. Intracranial vascular malformations and epilepsy. Semin Neurol 2015;35:223-234 https://doi.org/10.1055/s-0035-1552621
  46. Le TT, Fischbein NJ, Andre JB, Wijman C, Rosenberg J, Zaharchuk G. Identification of venous signal on arterial spin labeling improves diagnosis of dural arteriovenous fistulas and small arteriovenous malformations. AJNR Am J Neuroradiol 2012;33:61-68 https://doi.org/10.3174/ajnr.A2761
  47. Wolf RL, Wang J, Detre JA, Zager EL, Hurst RW. Arteriovenous shunt visualization in arteriovenous malformations with arterial spin-labeling MR imaging. AJNR Am J Neuroradiol 2008;29:681-687 https://doi.org/10.3174/ajnr.A0901
  48. Blauwblomme T, Naggara O, Brunelle F, Grevent D, Puget S, Di Rocco F, et al. Arterial spin labeling magnetic resonance imaging: toward noninvasive diagnosis and follow-up of pediatric brain arteriovenous malformations. J Neurosurg Pediatr 2015;15:451-458
  49. Yoo RE, Yun TJ, Yoon BW, Lee SK, Lee ST, Kang KM, et al. Identification of cerebral perfusion using arterial spin labeling in patients with seizures in acute settings. PLoS One 2017;12:e0173538 https://doi.org/10.1371/journal.pone.0173538
  50. Dussaule C, Masnou P, Nasser G, Archambaud F, Cauquil-Michon C, Gagnepain JP, et al. Can developmental venous anomalies cause seizures? J Neurol 2017;264:2495-2505 https://doi.org/10.1007/s00415-017-8456-5
  51. Iv M, Fischbein NJ, Zaharchuk G. Association of developmental venous anomalies with perfusion abnormalities on arterial spin labeling and bolus perfusion-weighted imaging. J Neuroimaging 2015;25:243-250 https://doi.org/10.1111/jon.12119
  52. Pinto A, Sahin M, Pearl PL. Epileptogenesis in neurocutaneous disorders with focus in Sturge Weber syndrome. F1000Res 2016;5. pii: F1000 Faculty Rev-370
  53. Varadkar S, Cross JH. Rasmussen syndrome and other inflammatory epilepsies. Semin Neurol 2015;35:259-268 https://doi.org/10.1055/s-0035-1552921
  54. Hauf M, Wiest R, Nirkko A, Strozzi S, Federspiel A. Dissociation of epileptic and inflammatory activity in Rasmussen encephalitis. Epilepsy Res 2009;83:265-268 https://doi.org/10.1016/j.eplepsyres.2008.11.009
  55. Kumar S, Nagesh CP, Thomas B, Radhakrishnan A, Menon RN, Kesavadas C. Arterial spin labeling hyperperfusion in Rasmussen's encephalitis: is it due to focal brain inflammation or a postictal phenomenon? J Neuroradiol 2018;45:6-14 https://doi.org/10.1016/j.neurad.2017.08.002
  56. Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:391-404 https://doi.org/10.1016/S1474-4422(15)00401-9
  57. Kelley BP, Patel SC, Marin HL, Corrigan JJ, Mitsias PD, Griffith B. Autoimmune encephalitis: pathophysiology and imaging review of an overlooked diagnosis. AJNR Am J Neuroradiol 2017;38:1070-1078 https://doi.org/10.3174/ajnr.A5086
  58. Sachs JR, Zapadka ME, Popli GS, Burdette JH. Arterial spin labeling perfusion imaging demonstrates cerebral hyperperfusion in anti-NMDAR encephalitis. Radiol Case Rep 2017;12:833-837 https://doi.org/10.1016/j.radcr.2017.06.004
  59. Espinosa-Jovel C, Toledano R, Garcia-Morales I, Alvarez-Linera J, Gil-Nagel A. Serial arterial spin labeling MRI in autonomic status epilepticus due to anti-LGI1 encephalitis. Neurology 2016;87:443-444 https://doi.org/10.1212/WNL.0000000000002903
  60. Bonello M, Michael BD, Solomon T. Infective causes of epilepsy. Semin Neurol 2015;35:235-244 https://doi.org/10.1055/s-0035-1552619
  61. Noguchi T, Yakushiji Y, Nishihara M, Togao O, Yamashita K, Kikuchi K, et al. Arterial spin-labeling in central nervous system infection. Magn Reson Med Sci 2016;15:386-394 https://doi.org/10.2463/mrms.mp.2015-0140
  62. Ances BM, Sisti D, Vaida F, Liang CL, Leontiev O, Perthen JE, et al.; HNRC group. Resting cerebral blood flow: a potential biomarker of the effects of HIV in the brain. Neurology 2009;73:702-708 https://doi.org/10.1212/WNL.0b013e3181b59a97
  63. Khoury MN, Gheuens S, Ngo L, Wang X, Alsop DC, Koralnik IJ. Hyperperfusion in progressive multifocal leukoencephalopathy is associated with disease progression and absence of immune reconstitution inflammatory syndrome. Brain 2013;136(Pt 11):3441-3450 https://doi.org/10.1093/brain/awt268
  64. Topolnik L, Steriade M, Timofeev I. Partial cortical deafferentation promotes development of paroxysmal activity. Cereb Cortex 2003;13:883-893 https://doi.org/10.1093/cercor/13.8.883
  65. Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA. Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 2008;29:1235-1241 https://doi.org/10.3174/ajnr.A1033
  66. Miyaji Y, Kawabata Y, Joki H, Seki S, Mori K, Kamide T, et al. Arterial spin-labeling magnetic resonance imaging for diagnosis of early seizure after stroke. J Neurol Sci 2015;354:127-128 https://doi.org/10.1016/j.jns.2015.04.049
  67. Miyaji Y, Yokoyama M, Kawabata Y, Joki H, Kushi Y, Yokoi Y, et al. Arterial spin-labeling magnetic resonance imaging for diagnosis of late seizure after stroke. J Neurol Sci 2014;339:87-90 https://doi.org/10.1016/j.jns.2014.01.026
  68. Nagesh C, Asranna A, K P D, Cherian A, Nanda S, Thomas B. Culpable brain lesion causing complex partial status in Wilson's disease: deduction by arterial spin labeled perfusion MRI. Seizure 2017;46:50-52 https://doi.org/10.1016/j.seizure.2017.02.007
  69. So EL, Ryvlin P. MRI-negative epilepsy, 1st ed. Cambridge: Cambridge University Press, 2015:255
  70. Wang ZI, Alexopoulos AV, Jones SE, Jaisani Z, Najm IM, Prayson RA. The pathology of magnetic-resonance-imagingnegative epilepsy. Mod Pathol 2013;26:1051-1058 https://doi.org/10.1038/modpathol.2013.52
  71. Jeon TY, Kim JH, Lee J, Yoo SY, Hwang SM, Lee M. Value of repeat brain MRI in children with focal epilepsy and negative findings on initial MRI. Korean J Radiol 2017;18:729-738 https://doi.org/10.3348/kjr.2017.18.4.729
  72. Rheims S, Jung J, Ryvlin P. Combination of PET and magnetoencephalography in the presurgical assessment of MRI-negative epilepsy. Front Neurol 2013;4:188
  73. Boscolo Galazzo I, Mattoli MV, Pizzini FB, De Vita E, Barnes A, Duncan JS, et al. Cerebral metabolism and perfusion in MRnegative individuals with refractory focal epilepsy assessed by simultaneous acquisition of (18)F-FDG PET and arterial spin labeling. Neuroimage Clin 2016;11:648-657 https://doi.org/10.1016/j.nicl.2016.04.005
  74. Mendes A, Sampaio L. Brain magnetic resonance in status epilepticus: a focused review. Seizure 2016;38:63-67 https://doi.org/10.1016/j.seizure.2016.04.007
  75. Kanazawa Y, Morioka T, Arakawa S, Furuta Y, Nakanishi A, Kitazono T. Nonconvulsive partial status epilepticus mimicking recurrent infarction revealed by diffusion-weighted and arterial spin labeling perfusion magnetic resonance images. J Stroke Cerebrovasc Dis 2015;24:731-738 https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.026

Cited by

  1. Ictal electroencephalography (EEG) activity and cerebral blood flow dynamics as potential pathological indicators: a case of anti-leucine-rich glioma-inactivated 1 protein (LGI1) encephalitis vol.60, pp.11, 2018, https://doi.org/10.5692/clinicalneurol.cn-001460
  2. Brain volume and perfusion asymmetry in temporal lobe epilepsy with and without hippocampal sclerosis vol.43, pp.4, 2021, https://doi.org/10.1080/01616412.2020.1853988
  3. Arterial spin labeling for presurgical localization of refractory frontal lobe epilepsy in children vol.26, pp.1, 2021, https://doi.org/10.1186/s40001-021-00564-0