DOI QR코드

DOI QR Code

Effect of Hybrid Kernel and Iterative Reconstruction on Objective and Subjective Analysis of Lung Nodule Calcification in Low-Dose Chest CT

  • Hong, Seul Gi (Department of Radiology, College of Medicine, Dong-A University) ;
  • Kang, Eun-Ju (Department of Radiology, College of Medicine, Dong-A University) ;
  • Park, Jae Hyung (Department of Radiology, College of Medicine, Dong-A University) ;
  • Choi, Won Jin (Department of Radiology, College of Medicine, Dong-A University) ;
  • Lee, Ki-Nam (Department of Radiology, College of Medicine, Dong-A University) ;
  • Kwon, Hee Jin (Department of Radiology, College of Medicine, Dong-A University) ;
  • Ha, Dong-Ho (Department of Radiology, College of Medicine, Dong-A University) ;
  • Kim, Dong Won (Department of Radiology, College of Medicine, Dong-A University) ;
  • Kim, Sang Hyeon (Department of Radiology, College of Medicine, Dong-A University) ;
  • Jo, Jeong-Hyun (Department of Radiology, College of Medicine, Dong-A University) ;
  • Lee, Jongmin (Department of Radiology, College of Medicine, Kyungpook National University)
  • Received : 2017.08.31
  • Accepted : 2018.03.02
  • Published : 2018.10.01

Abstract

Objective: To evaluate the differences in subjective calcification detection rates and objective calcium volumes in lung nodules according to different reconstruction methods using hybrid kernel (FC13-H) and iterative reconstruction (IR). Materials and Methods: Overall, 35 patients with small (< 4 mm) calcified pulmonary nodules on chest CT were included. Raw data were reconstructed using filtered back projection (FBP) or IR algorithm (AIDR-3D; Canon Medical Systems Corporation), with three types of reconstruction kernel: conventional lung kernel (FC55), FC13-H and conventional soft tissue kernel (FC13). The calcium volumes of pulmonary nodules were quantified using the modified Agatston scoring method. Two radiologists independently interpreted the role of each nodule calcification on the six types of reconstructed images (FC55/FBP, FC55/AIDR-3D, FC13-H/FBP, FC13-H/AIDR-3D, FC13/FBP, and FC13/AIDR-3D). Results: Seventy-eight calcified nodules detected on FC55/FBP images were regarded as reference standards. The calcium detection rates of FC55/AIDR-3D, FC13-H/FBP, FC13-H/AIDR-3D, FC13/FBP, and FC13/AIDR-3D protocols were 80.7%, 15.4%, 6.4%, 52.6%, and 28.2%, respectively, and FC13-H/AIDR-3D showed the smallest calcium detection rate. The calcium volume varied significantly with reconstruction protocols and FC13/AIDR-3D showed the smallest calcium volume ($0.04{\pm}0.22mm^3$), followed by FC13-H/AIDR-3D. Conclusion: Hybrid kernel and IR influence subjective detection and objective measurement of calcium in lung nodules, particularly when both techniques (FC13-H/AIDR-3D) are combined.

Keywords

Acknowledgement

Supported by : Dong-A University

References

  1. Chiles C. Lung cancer screening with low-dose computed tomography. Radiol Clin North Am 2014;52:27-46 https://doi.org/10.1016/j.rcl.2013.08.006
  2. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA, Shepard JA, et al. Strategies for CT radiation dose optimization. Radiology 2004;230:619-628 https://doi.org/10.1148/radiol.2303021726
  3. Kim Y, Kim YK, Lee BE, Lee SJ, Ryu YJ, Lee JH, et al. Ultralow-dose CT of the thorax using iterative reconstruction: evaluation of image quality and radiation dose reduction. AJR Am J Roentgenol 2015;204:1197-1202 https://doi.org/10.2214/AJR.14.13629
  4. Singh S, Kalra MK, Gilman MD, Hsieh J, Pien HH, Digumarthy SR, et al. Adaptive statistical iterative reconstruction technique for radiation dose reduction in chest CT: a pilot study. Radiology 2011;259:565-573 https://doi.org/10.1148/radiol.11101450
  5. Katsura M, Matsuda I, Akahane M, Sato J, Akai H, Yasaka K, et al. Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique. Eur Radiol 2012;22:1613-1623 https://doi.org/10.1007/s00330-012-2452-z
  6. Lim HJ, Chung MJ, Shin KE, Hwang HS, Lee KS. The impact of iterative reconstruction in low-dose computed tomography on the evaluation of diffuse interstitial lung disease. Korean J Radiol 2016;17:950-960 https://doi.org/10.3348/kjr.2016.17.6.950
  7. Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. AJR Am J Roentgenol 2015;204:W384-W392 https://doi.org/10.2214/AJR.14.13241
  8. Grewal RG, Austin JH. CT demonstration of calcification in carcinoma of the lung. J Comput Assist Tomogr 1994;18:867-871 https://doi.org/10.1097/00004728-199411000-00004
  9. Fischbach F, Knollmann F, Griesshaber V, Freund T, Akkol E, Felix R. Detection of pulmonary nodules by multislice computed tomography: improved detection rate with reduced slice thickness. Eur Radiol 2003;13:2378-2383 https://doi.org/10.1007/s00330-003-1915-7
  10. Sinsuat M, Saita S, Kawata Y, Niki N, Ohmatsu H, Tsuchida T, et al. Influence of slice thickness on diagnoses of pulmonary nodules using low-dose CT: potential dependence of detection and diagnostic agreement on features and location of nodule. Acad Radiol 2011;18:594-604 https://doi.org/10.1016/j.acra.2011.01.007
  11. National Lung Screening Trial Research Team, Church TR, Black WC, Aberle DR, Berg CD, Clingan KL, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med 2013;368:1980-1991 https://doi.org/10.1056/NEJMoa1209120
  12. Kazerooni EA, Austin JH, Black WC, Dyer DS, Hazelton TR, Leung AN, et al.; American College of Radiology; Society of Thoracic Radiology. ACR-STR practice parameter for the performance and reporting of lung cancer screening thoracic computed tomography (CT): 2014 (Resolution 4). J Thorac Imaging 2014;29:310-316 https://doi.org/10.1097/RTI.0000000000000097
  13. Rubin GD. Data explosion: the challenge of multidetector-row CT. Eur J Radiol 2000;36:74-80 https://doi.org/10.1016/S0720-048X(00)00270-9
  14. Strub WM, Weiss KL, Sun D. Hybrid reconstruction kernel: optimized chest CT. AJR Am J Roentgenol 2007;189:W115-W116 https://doi.org/10.2214/AJR.07.2244
  15. Khan AN, Al-Jahdali HH, Allen CM, Irion KL, Al Ghanem S, Koteyar SS. The calcified lung nodule: what does it mean? Ann Thorac Med 2010;5:67-79 https://doi.org/10.4103/1817-1737.62469
  16. Toshiba Aquilion ONE Operation Manual 2B201-417EN*P. Toshiba Scanner TSX-301A. Toshiba Medical System Cooperation. Chapter 12 eXam Plan Management, 2011:167-214
  17. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827-832 https://doi.org/10.1016/0735-1097(90)90282-T
  18. Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AJR Am J Roentgenol 2010;194:881-889 https://doi.org/10.2214/AJR.09.3462
  19. Webb WR. Radiologic evaluation of the solitary pulmonary nodule. AJR Am J Roentgenol 1990;154:701-708 https://doi.org/10.2214/ajr.154.4.2107661
  20. Diederich S, Wormanns D, Heindel W. Lung cancer screening with low-dose CT. Eur J Radiol 2003;45:2-7 https://doi.org/10.1016/S0720-048X(02)00302-9
  21. Henschke CI, McCauley DI, Yankelevitz DF, Naidich DP, McGuinness G, Miettinen OS, et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 1999;354:99-105 https://doi.org/10.1016/S0140-6736(99)06093-6
  22. Swensen SJ, Jett JR, Hartman TE, Midthun DE, Sloan JA, Sykes AM, et al. Lung cancer screening with CT: Mayo Clinic experience. Radiology 2003;226:756-761 https://doi.org/10.1148/radiol.2263020036
  23. Wormanns D, Kohl G, Klotz E, Marheine A, Beyer F, Heindel W, et al. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol 2004;14:86-92 https://doi.org/10.1007/s00330-003-2132-0
  24. Armato SG 3rd, Altman MB, La Riviere PJ. Automated detection of lung nodules in CT scans: effect of image reconstruction algorithm. Med Phys 2003;30:461-472 https://doi.org/10.1118/1.1544679
  25. Willemink MJ, Leiner T, de Jong PA, de Heer LM, Nievelstein RA, Schilham AM, et al. Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol 2013;23:1632-1642 https://doi.org/10.1007/s00330-012-2764-z
  26. Schindler A, Vliegenthart R, Schoepf UJ, Blanke P, Ebersberger U, Cho YJ, et al. Iterative image reconstruction techniques for CT coronary artery calcium quantification: comparison with traditional filtered back projection in vitro and in vivo. Radiology 2014;270:387-393 https://doi.org/10.1148/radiol.13130233
  27. van Osch JA, Mouden M, van Dalen JA, Timmer JR, Reiffers S, Knollema S, et al. Influence of iterative image reconstruction on CT-based calcium score measurements. Int J Cardiovasc Imaging 2014;30:961-967

Cited by

  1. A phantom study to optimise the automatic tube current modulation for chest CT in COVID-19 vol.5, pp.1, 2021, https://doi.org/10.1186/s41747-021-00218-0