DOI QR코드

DOI QR Code

Self-Supported NiSe/Ni Foam: An Efficient 3D Electrode for High-Performance Supercapacitors

  • Zhang, Jingtong (State Key Laboratory of Heavy Oil Processing China University of Petroleum) ;
  • Zhao, Fuzhen (State Key Laboratory of Heavy Oil Processing China University of Petroleum) ;
  • Du, Kun (College of Science China University of Petroleum) ;
  • Zhou, Yan (State Key Laboratory of Heavy Oil Processing China University of Petroleum)
  • Received : 2018.08.03
  • Accepted : 2018.10.22
  • Published : 2018.11.30

Abstract

Three-dimensional (3D) mixed phases NiSe nanoparticles growing on the nickel foam were synthesized via a simple one-step hydrothermal method. A series of experiments were carried out to control the morphology by adjusting the amount of selenium in the synthetic reaction. Meanwhile, the as-prepared novel column-acicular structure NiSe exist three advantages including ideal electrical conductivity, high specific capacity and high cycling stability. It delivered a high capacitance of $10.8F\;cm^{-2}$ at a current density- of $5mA\;cm^{-2}$. An electrochemical capacitor device operating at 1.6 V was then constructed using NiSe/NF and activated carbon (AC) as positive and negative electrodes. Moreover, the device showed high energy density of $31W\;h\;kg^{-1}$ at a power density of $0.81kW\;kg^{-1}$, as well as good cycling stability (77% retention after 1500 cycles).

Keywords

Acknowledgement

Supported by : Shandong Provincial Natural Science Foundation, National Natural Science Foundation of China

References

  1. M. Armand and J. M. Tarascon, Nature 451, 652 (2008). https://doi.org/10.1038/451652a
  2. B. Kang and G. Ceder, Nature 458, 190 (2009). https://doi.org/10.1038/nature07853
  3. X. Luo, J. Wang, M. Dooner and J. Clarke, Appl. Energy 137, 511 (2015). https://doi.org/10.1016/j.apenergy.2014.09.081
  4. Z. Tang, C. Tang and H. Gong, Adv. Funct. Mater. 22, 1272 (2012). https://doi.org/10.1002/adfm.201102796
  5. H. Chen, J. Li, C. Long, T. Wei, G. Ning, J. Yan and Z. Fan, J. Mar. Sci. Appl. 13, 462 (2014). https://doi.org/10.1007/s11804-014-1279-1
  6. B. G. Choi, S. J. Chang, H. W. Kang, C. P. Park, H. J. Kim, W. H. Hong, S. G. Lee and Y. S. Huh, Nanoscale 4, 4983 (2012). https://doi.org/10.1039/c2nr30991b
  7. Q. Chu, W. Wang, X. Wang, B. Yang, X. Liu and J. Chen, J. Power Sources 276, 19 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.015
  8. Y. Wang, Y. Lu, K. Chen, S. Cui, W. Chen and L. Mi, Electrochim. Acta 283, 1087 (2018). https://doi.org/10.1016/j.electacta.2018.06.163
  9. K. Guo, S. Cui, H. Hou, W. Chen and L. Mi, Dalton Trans. 45, 19458 (2016). https://doi.org/10.1039/C6DT03863H
  10. J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan and D. Mitlin, Energy Environ. Sci. 8, 941 (2015). https://doi.org/10.1039/C4EE02986K
  11. Z. Xiao, L. Fan, B. Xu, S. Zhang, W. Kang, Z. Kang, H. Lin, X. Liu, S. Zhang and D. Sun, ACS Appl. Mater. Interfaces 9, 41827 (2017). https://doi.org/10.1021/acsami.7b10309
  12. X. Dai, D. Chen, H. Fan, Y. Zhong, L. Chang, H. Shao, J. Wang, J. Zhang and C. Cao, Electrochim. Acta 154, 128 (2015). https://doi.org/10.1016/j.electacta.2014.12.066
  13. R. A. Davoglio, S. R. Biaggio and N. Bocchi, Electrochim. Acta 93, 93 (2013). https://doi.org/10.1016/j.electacta.2013.01.062
  14. G. Zhang, L. Yu, H. E. Hoster and X. Lou, Nanoscale 5, 877 (2013). https://doi.org/10.1039/C2NR33326K
  15. K. Liang, X. Tang and W. Hu, J. Mater. Chem. 22, 11062 (2012). https://doi.org/10.1039/c2jm31526b
  16. X. Dai, D. Chen, H. Fan, Y. Zhong, L. Chang, H. Shao, J. Wang, J. Zhang and C. Cao, Electrochim. Acta 154, 128 (2015). https://doi.org/10.1016/j.electacta.2014.12.066
  17. B. Hu, X. Qin, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi and X. Sun, Electrochim. Acta 107, 339 (2013). https://doi.org/10.1016/j.electacta.2013.06.003
  18. Z. Pu, Q. Liu, A. H. Qusti, A. M. Asiri, A. O. Al-Youbi and X. Sun, Electrochim. Acta 109, 252 (2013). https://doi.org/10.1016/j.electacta.2013.07.161
  19. T. Zhu, H. B. Wu, Y. Wang, R. Xu and X. Lou, Adv. Energy Mater. 2, 1497 (2012). https://doi.org/10.1002/aenm.201200269
  20. H. Huo, Y. Zhao and C. Xu, J. Mater. Chem. A 2, 15111 (2014). https://doi.org/10.1039/C4TA02857K
  21. J. Yang, X. Duan, W. Guo, D. Li, H. Zhang and W. Zheng, Nano Energy 5, 74 (2014). https://doi.org/10.1016/j.nanoen.2014.02.006
  22. Z. Xing, Q. Chu, X. Ren, J. Tian, A. M. Asiri, K. A. Alamry, A. O. Al-Youbi and X. Sun, Electrochem. Commun. 32, 9 (2013). https://doi.org/10.1016/j.elecom.2013.03.033
  23. J. Zeng, M. Li, A. Liu, F. Feng, T. Zeng, W. Duan, M. Li, M. Gong, C. Wen and Y. Yin, Adv. Funct. Mater. 28, 1800515 (2018). https://doi.org/10.1002/adfm.201800515
  24. S. Ma, S. Zhou, S. Wang and M. Liu, J. Alloy Compd. 728, 592 (2017). https://doi.org/10.1016/j.jallcom.2017.08.257
  25. L. Mi, H. Sun, Q. Ding, W. Chen, C. Liu, H. Hou, Z. Zheng and C. Shen, Dalton Trans. 41, 12595 (2012). https://doi.org/10.1039/c2dt31787g
  26. B. Yu, Y. Hu, F. Qi, X. Wang, B. Zheng, K. Liu, W. Zhang, Y. Li and Y. Chen, Electrochim. Acta 242, 25 (2017). https://doi.org/10.1016/j.electacta.2017.05.001
  27. C. Yuan, J. Li, L. Hou, X. Zhang, L. Shen and X. Lou, Adv. Funct. Mater. 22, 4592 (2012). https://doi.org/10.1002/adfm.201200994
  28. Z. Yang, H. Zhang, B. Ma, L. Xie, Y. Chen, Z. Yuan, K. Zhang and J. Wei, Appl. Surf. Sci. 463, 150 (2019). https://doi.org/10.1016/j.apsusc.2018.08.185
  29. Y. Tian, Y. Ruan, J. Zhang, Z. Yang, J. Jiang and C. Wang, Electrochim. Acta 250, 327 (2017). https://doi.org/10.1016/j.electacta.2017.08.084
  30. L. Du, W. Du, H. Ren, N. Wang, Z. Yao, X. Shi, B. Zhang, J. Zai and X. Qian, J. Mater. Chem. A 5, 22527 (2017). https://doi.org/10.1039/C7TA06921A
  31. K. Guo, F. Yang, S. Cui, W. Chen and L. Mi, RSC. Adv. 6, 46523 (2016). https://doi.org/10.1039/C6RA06909F
  32. H. Chen, J. Li, C. Long, T. Wei, G. Ning, J. Yan and Z. Fan, J. Mar. Sci. Appl. 13, 462 (2014). https://doi.org/10.1007/s11804-014-1279-1
  33. D. Cai, H. Huang, D. Wang, B. Liu, L. Wang, Y. Liu, Q. Li and T. Wang, ACS Appl. Mater. Interfaces 6, 15905 (2014). https://doi.org/10.1021/am5035494
  34. A. Bera, A. K. Das, A. Maitra, R. Bera, S. K. Karan, S. Paria, L. Halder, S. K. Si and B. B. Khatua, Chem. Eng. J. 343, 44 (2018). https://doi.org/10.1016/j.cej.2018.02.110
  35. M. Wang, Y. Wang, H. Dou, G. Wei and X. Wang, Ceram. Int. 42, 9858 (2016). https://doi.org/10.1016/j.ceramint.2016.03.085
  36. C. Tang, Z. Pu, Q. Liu, A. M. Asiri, X. Sun, Y. Luo and Y. He, Chem. Electro. Chem. 2, 1903 (2015).
  37. D. Zhang, X. Kong, Y. Zhao, M. Jiang and X. Lei, J. Mater. Chem. A 4, 12833 (2016). https://doi.org/10.1039/C6TA04413A