DOI QR코드

DOI QR Code

Low-Cost Flexible Strain Sensor Based on Thick CVD Graphene

  • Chen, Bailiang (Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology) ;
  • Liu, Ying (Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology) ;
  • Wang, Guishan (Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology) ;
  • Cheng, Xianzhe (Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology) ;
  • Liu, Guanjun (Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology) ;
  • Qiu, Jing (Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology) ;
  • Lv, Kehong (Science and Technology on Integrated Logistics Support Laboratory National University of Defense Technology)
  • Received : 2018.05.18
  • Accepted : 2018.09.28
  • Published : 2018.11.30

Abstract

Flexible strain sensors, as the core member of the family of smart electronic devices, along with reasonable sensing range and sensitivity plus low cost, have rose a huge consumer market and also immense interests in fundamental studies and technological applications, especially in the field of biomimetic robots movement detection and human health condition monitoring. In this paper, we propose a new flexible strain sensor based on thick CVD graphene film and its low-cost fabrication strategy by using the commercial adhesive tape as flexible substrate. The tensile tests in a strain range of ~30% were implemented, and a gage factor of 30 was achieved under high strain condition. The optical microscopic observation with different strains showed the evolution of cracks in graphene film. Together with commonly used platelet overlap theory and percolation network theory for sensor resistance modeling, we established an overlap destructive resistance model to analyze the sensing mechanism of our devices, which fitted the experimental data very well. The finding of difference of fitting parameters in small and large strain ranges revealed the multiple stage feature of graphene crack evolution. The resistance fallback phenomenon due to the viscoelasticity of flexible substrate was analyzed. Our flexible strain sensor with low cost and simple fabrication process exhibits great potential for commercial applications.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. T. Q. Trung and N.-E. Lee, Adv. Mater. 28, 4338 (2016). https://doi.org/10.1002/adma.201504244
  2. H. Kim and J.-H. Ahn, Carbon 120, 244 (2017). https://doi.org/10.1016/j.carbon.2017.05.041
  3. Y. Zhao and X. Huang, Micromachines 8, 69 (2017). https://doi.org/10.3390/mi8030069
  4. S. Liu, X. Wu, D. Zhang, C. Guo, P. Wang, W. Hu, X. Li, X. Zhou, H. Xu, C. Luo, J. Zhang and J. Chu, ACS Appl. Mater. Interf. 9, 24148 (2017). https://doi.org/10.1021/acsami.7b07311
  5. Y. Sun and Y. Xia, Adv. Mater. 14, 833 (2002). https://doi.org/10.1002/1521-4095(20020605)14:11<833::AID-ADMA833>3.0.CO;2-K
  6. A. R. Madaria, A. Kumar and C. Zhou, Nanotechnology 22, 245201 (2011). https://doi.org/10.1088/0957-4484/22/24/245201
  7. J. R. Bautista-Quijano, F. Aviles and J. V. Cauich-Rodriguez, J. Appl. Polym. Sci. 130, 375 (2013). https://doi.org/10.1002/app.39177
  8. S.-J. Park, J. Kim, M. Chu and M. Khine, Adv. Mater. Technol. 1, 1600053 (2016). https://doi.org/10.1002/admt.201600053
  9. C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee and P. S. Lee, Adv. Mater. 26, 2022 (2014). https://doi.org/10.1002/adma.201304742
  10. Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, F. Xu, J. Li, Y. Yuan, X. He and Y. Li, ACS Nano 9, 8933 (2015). https://doi.org/10.1021/acsnano.5b02781
  11. C. S. Boland, U. Khan, G. Ryan, S. Barwich, R. Charifou, A. Harvey, C. Backes, Z. Li, M. S. Ferreira, M. E. Mobius, R. J. Young and J. N. Coleman, Science 354, 1257 (2016). https://doi.org/10.1126/science.aag2879
  12. C. S. Boland, U. Khan, C. Backes, A. O'Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton and J. N. Coleman, ACS Nano 8, 8819 (2014). https://doi.org/10.1021/nn503454h
  13. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida and T. Someya, Science 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  14. J.-B. Chossat, Y.-L. J. Wood and V. Duchaine, IEEE Sens. J. 13, 3405 (2013). https://doi.org/10.1109/JSEN.2013.2263797
  15. X.-W. Zhang, Y. Pan, Q. Zheng and X.-S. Yi, J. Polym. Sci. Part B Polym. Phys. 38, 2739 (2000). https://doi.org/10.1002/1099-0488(20001101)38:21<2739::AID-POLB40>3.0.CO;2-O
  16. G. R. Ruschau, S. Yoshikawa and R. E. Newnham, J. Appl. Phys. 72, 953 (1992). https://doi.org/10.1063/1.352350
  17. M. Knite, V. Teteris, A. Kiploka and J. Kaupuzs, Sens. Actuators Phys. 110, 142 (2004). https://doi.org/10.1016/j.sna.2003.08.006
  18. F. R. Al-solamy, A. A. Al-Ghamdi and W. E. Mahmoud, Polym. Adv. Technol. 23, 478 (2012).
  19. A. D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A. C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Ostling and M. C. Lemme, Nano Lett. 13, 3237 (2013). https://doi.org/10.1021/nl401352k
  20. D. Kang, P. V. Pikhitsa, Y. W. Choi, C. Lee, S. S. Shin, L. Piao, B. Park, K.-Y. Suh, T. Kim and M. Choi, Nature 516, 222 (2014). https://doi.org/10.1038/nature14002
  21. B. Park, J. Kim, D. Kang, C. Jeong, K. S. Kim, J. U. Kim, P. J. Yoo and T. Kim, Adv. Mater. 28, 8130 (2016). https://doi.org/10.1002/adma.201602425
  22. T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li and H. Zhu, Mater. Horiz. 3, 248 (2016). https://doi.org/10.1039/C6MH00027D
  23. S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim and J.-H. Ahn, Carbon 51, 236 (2013). https://doi.org/10.1016/j.carbon.2012.08.048
  24. J. Zhao, G. Wang, R. Lu, M. Cheng, C. He, G. Xie, J. Meng, D. Shi and G. Zhang, ACS Nano 9, 1622 (2015). https://doi.org/10.1021/nn506341u
  25. X. Liao, Q. Liao, X. Yan, Q. Liang, H. Si, M. Li, H. Wu, S. Cao and Y. Zhang, Adv. Funct. Mater. 25, 2395 (2015). https://doi.org/10.1002/adfm.201500094
  26. Q. Liu, J. Chen, Y. Li and G. Shi, ACS Nano 10, 7901 (2016). https://doi.org/10.1021/acsnano.6b03813
  27. X. Chen, X. Zheng, J.-K. Kim, X. Li and D.-W. Lee, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29, 06FE01 (2011).
  28. T. Yang, D. Xie, Z. Li and H. Zhu, Mater. Sci. Eng. R Rep. 115, 1-37 (2017). https://doi.org/10.1016/j.mser.2017.02.001
  29. A. K. Geim, Science 324, 1530 (2009). https://doi.org/10.1126/science.1158877
  30. H. Jang, Y. J. Park, X. Chen, T. Das, M.-S. Kim and J.-H. Ahn, Adv. Mater. 28, 4184 (2016). https://doi.org/10.1002/adma.201504245
  31. X. Li, T. Yang, Y. Yang, J. Zhu, L. Li, F. E. Alam, X. Li, K. Wang, H. Cheng, C.-T. Lin, Y. Fang and H. Zhu, Adv. Funct. Mater. 26, 1322 (2016). https://doi.org/10.1002/adfm.201504717
  32. Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao and J.-B. Xu, ACS Nano 11, 4507 (2017). https://doi.org/10.1021/acsnano.6b08027
  33. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  34. J. D. Ferry and J. D. Ferry, Viscoelastic Properties of Polymers (John Wiley & Sons, 1980), pp. 60-64.
  35. J. C. Lotters, W. Olthuis, P. H. Veltink and P. Bergveld, J. Micromech. Microeng. 7, 145 (1997). https://doi.org/10.1088/0960-1317/7/3/017
  36. H. F. Brinson and L. C. Brinson, Polymer Engineering Science and Viscoelasticity: An Introduction (Springer US, 2008), pp. 57-100.
  37. J.-R. Lu, W.-G. Weng, X.-F. Chen, D.-J. Wu, C.-L. Wu and G.-H. Chen, Adv. Funct. Mater. 15, 1358 (2005). https://doi.org/10.1002/adfm.200400298