참고문헌
- Cruz JA, Wishart DS. Applications of machine learning in cancer prediction and prognosis. Cancer Inform 2007;2:59-77.
- Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform 2002;35:352-9. https://doi.org/10.1016/S1532-0464(03)00034-0
- Hopfield JJ. Artificial neural networks. IEEE Circuit Device Mag 1988;4:3-10.
- Baird EO, Egorova NN, McAnany SJ, et al. National trends in outpatient surgical treatment of degenerative cervical spine disease. Global Spine J 2014;4:143-50. https://doi.org/10.1055/s-0034-1376917
- Klein GR, Vaccaro AR, Albert TJ. Health outcome assessment before and after anterior cervical discectomy and fusion for radiculopathy: a prospective analysis. Spine (Phila Pa 1976) 2000;25:801-3. https://doi.org/10.1097/00007632-200004010-00007
- Yue WM, Brodner W, Highland TR. Long-term results after anterior cervical discectomy and fusion with allograft and plating: a 5- to 11-year radiologic and clinical follow-up study. Spine (Phila Pa 1976) 2005;30:2138-44. https://doi.org/10.1097/01.brs.0000180479.63092.17
- Marawar S, Girardi FP, Sama AA, et al. National trends in anterior cervical fusion procedures. Spine (Phila Pa 1976) 2010;35:1454-9. https://doi.org/10.1097/BRS.0b013e3181bef3cb
- Adamson T, Godil SS, Mehrlich M, et al. Anterior cervical discectomy and fusion in the outpatient ambulatory surgery setting compared with the inpatient hospital setting: analysis of 1000 consecutive cases. J Neurosurg Spine 2016;24:878-84. https://doi.org/10.3171/2015.8.SPINE14284
- Haibo He, Yang Bai, Garcia EA, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE;2008:1322-8.
- Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artif Intell 1997;97:245-71. https://doi.org/10.1016/S0004-3702(97)00063-5
- Moller AM, Pedersen T, Villebro N, et al. Effect of smoking on early complications after elective orthopaedic surgery. J Bone Joint Surg Br 2003;85:178-81.
- Iorio R, Williams KM, Marcantonio AJ, et al. Diabetes mellitus, hemoglobin A1C, and the incidence of total joint arthroplasty infection. J Arthroplasty 2012;27:726-9. https://doi.org/10.1016/j.arth.2011.09.013
- Chen S, Anderson MV, Cheng WK, et al. Diabetes associated with increased surgical site infections in spinal arthrodesis. Clin Orthop Relat Res 2009;467:1670-3. https://doi.org/10.1007/s11999-009-0740-y
- Van Esbroeck A, Rubinfeld I, Hall B, et al. Quantifying surgical complexity with machine learning: looking beyond patient factors to improve surgical models. Surgery 2014;156:1097-105. https://doi.org/10.1016/j.surg.2014.04.034
- Hu Z, Simon GJ, Arsoniadis EG, et al. Automated detection of postoperative surgical site infections using supervised methods with electronic health record data. Stud Health Technol Inform 2015;216:706-10.
- Sohn S, Larson DW, Habermann EB, et al. Detection of clinically important colorectal surgical site infection using Bayesian network. J Surg Res 2017;209:168-73. https://doi.org/10.1016/j.jss.2016.09.058
- Bilimoria KY, Liu Y, Paruch JL, et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J Am Coll Surg 2013;217:833-42. https://doi.org/10.1016/j.jamcollsurg.2013.07.385
- Krell MM, Wilshusen N, Seeland A, et al. Classifier transfer with data selection strategies for online support vector machine classification with class imbalance. J Neural Eng 2017;14:025003. https://doi.org/10.1088/1741-2552/aa5166
- Wang Q, Luo Z, Huang J, et al. A novel ensemble method for imbalanced data learning: bagging of extrapolation-SMOTE SVM. Comput Intell Neurosci 2017;2017:1827016.
- Somani S, Di Capua J, Kim JS, et al. Comparing national inpatient sample and national surgical quality improvement program: an independent risk factor analysis for risk stratification in anterior cervical discectomy and fusion. Spine (Phila Pa 1976) 2017;42:565-72. https://doi.org/10.1097/BRS.0000000000001850
- Wang TY, Martin JR, Loriaux DB, et al. Risk assessment and characterization of 30-day perioperative myocardial infarction following spine surgery: a retrospective analysis of 1346 consecutive adult patients. Spine (Phila Pa 1976) 2016;41:438-44. https://doi.org/10.1097/BRS.0000000000001249
- Tsai JT, Chou JH, Liu TK. Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans Neural Netw 2006;17:69-80. https://doi.org/10.1109/TNN.2005.860885
- Cios KJ, Moore GW. Uniqueness of medical data mining. Artif Intell Med 2002;26:1-24. https://doi.org/10.1016/S0933-3657(02)00049-0
- Weber GM, Mandl KD, Kohane IS. Finding the missing link for big biomedical data. JAMA 2014;311:2479-80.
피인용 문헌
- Complications of Spine Surgery in Elderly Japanese Patients: Implications for Future of World Population Aging vol.16, pp.4, 2018, https://doi.org/10.14245/ns.1938184.092
- Upper Cervical Surgery, Increased Signal Intensity of the Spinal Cord, and Hypertension as Risk Factors for Dyspnea After Multilevel Anterior Cervical Discectomy and Fusion vol.45, pp.7, 2018, https://doi.org/10.1097/brs.0000000000003329
- The Impact of Artificial Intelligence on Quality and Safety vol.10, pp.1, 2018, https://doi.org/10.1177/2192568219878133
- The Application of Artificial Neural Networks and Logistic Regression in the Evaluation of Risk for Dry Eye after Vitrectomy vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/1024926
- Harnessing Big Data in Neurocritical Care in the Era of Precision Medicine vol.22, pp.5, 2020, https://doi.org/10.1007/s11940-020-00622-8
- A Review on the Use of Artificial Intelligence in Spinal Diseases vol.14, pp.4, 2018, https://doi.org/10.31616/asj.2020.0147
- Comparison of clinical and radiological outcomes in cervical laminoplasty versus laminectomy with fusion in patients with ossification of the posterior longitudinal ligament vol.43, pp.5, 2020, https://doi.org/10.1007/s10143-019-01174-5
- Comparison of the effectiveness and safety of bioactive glass ceramic to allograft bone for anterior cervical discectomy and fusion with anterior plate fixation vol.43, pp.5, 2018, https://doi.org/10.1007/s10143-019-01225-x
- The applications of machine learning in plastic and reconstructive surgery: protocol of a systematic review vol.9, pp.1, 2018, https://doi.org/10.1186/s13643-020-01304-x
- Using Predictive Modeling and Machine Learning to Identify Patients Appropriate for Outpatient Anterior Cervical Fusion and Discectomy vol.46, pp.10, 2021, https://doi.org/10.1097/brs.0000000000003865
- Neurosurgery and artificial intelligence vol.8, pp.4, 2018, https://doi.org/10.3934/neuroscience.2021025
- Applications of Machine Learning in Pediatric Hydrocephalus: A Systematic Review vol.69, pp.8, 2018, https://doi.org/10.4103/0028-3886.332287
- TET-dependent GDF7 hypomethylation impairs aqueous humor outflow and serves as a potential therapeutic target in glaucoma vol.29, pp.4, 2018, https://doi.org/10.1016/j.ymthe.2020.12.030
- Artificial Intelligence and Robotics in Spine Surgery vol.11, pp.4, 2021, https://doi.org/10.1177/2192568220915718
- The diagnostic and prognostic value of artificial intelligence and artificial neural networks in spinal surgery : a narrative review vol.103, pp.9, 2021, https://doi.org/10.1302/0301-620x.103b9.bjj-2021-0192.r1