DOI QR코드

DOI QR Code

Classification of Deep Inferior Epigastric Perforator Courses Based on Computed Tomography Angiography: Incidences and Clinical Implications

컴퓨터 단층 촬영 혈관 조영술을 이용한 심하복벽 혈관과 천공지의 박리 용이성에 따른 분류

  • Lee, Yeonhoon (Department of Plastic Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Sung Chan (Woori Plastic Surgery Clinic) ;
  • Eom, Jin Sup (Department of Plastic Surgery, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Eun Key (Department of Plastic Surgery, Asan Medical Center, University of Ulsan College of Medicine)
  • 이연훈 (울산대학교 의과대학 서울아산병원 성형외과학교실) ;
  • 김성찬 (우리성형외과의원) ;
  • 엄진섭 (울산대학교 의과대학 서울아산병원 성형외과학교실) ;
  • 김은기 (울산대학교 의과대학 서울아산병원 성형외과학교실)
  • Received : 2018.07.25
  • Accepted : 2018.09.17
  • Published : 2018.12.01

Abstract

Purpose: Preoperative surgical planning utilizing computed tomography angiography (CTA) has now become a routine in many practices. We analyzed the course of the deep inferior epigastric artery (DIEA) and its perforators (DIEP) that would either facilitate or hinder flap dissection based on CTA to aid surgical planning. Methods: The 115 consecutive patients who underwent abdominally based free flap breast reconstruction were enrolled in this prospective study. DIEA/P courses were categorized mainly according to their intramuscular courses and their incidences were investigated. Results: A total of 425 perforators were identified preoperatively on the CTA, with an average number of 3.7 distinctly visualized in the entire flap territory. Eighty-nine perforators (20.9%) had a favorable (less than 1 cm intramuscular course) pattern, namely long submuscular (34.8% of the patients), long subfascial (15.6%), and total circummuscular (13.9%). Overall 56.5% of the patients had at least one favorable DIEA/P. On the other hand, absence of DIEA and absence of adequate (>1 mm) DIEP was reported in 3 and 8 hemiabdomen. Conclusion: Preoperative CTA evaluation of DIEA/P can be used to identify favorable as well as unfavorable courses for dissection to aid surgical planning.

목적: 우리는 미세혈관 유방 재건술 수술 계획에 참고하기 위하여 컴퓨터 단층 촬영(computed tomography, CT)혈관 조영술을 이용하여 심하복벽혈관과 천공지의 주행을 세부 유형으로 나누어 보고 영상 및 임상 소견의 상관성과 각 유형의 빈도를 보고하고자 한다. 방법: 하복부 조직을 이용한 유방 재건을 받은 연속한 115명의 환자를 전향적으로 분석하였다. 심하복벽동맥과 천공지를 주로 근육 내 주행의 특징에 따라 박리하기 용이한 것과 박리에 곤란한 것으로 특징짓고 각각의 빈도를 조사하였다. 결과: 확인된 425개의 천공지 중 89개(20.9%)의 천공지는 박리에 용이한 주행을 하였으며 긴 근육 아래 주행(34.8%), 긴 근막 아래 주행(15.6%), 근육 주위 주행(13.9%)이 그에 속하였다. 반면 심하복벽동맥이 없거나 적절한 천공지가 조영되지 않는 경우가 3예와 8예에서 보고되었다. 총 65명(56.5%)의 환자가 적어도 한 개 이상의 박리가 용이한 천공지를 가지고 있었다. 결론: 수술 전 CT 혈관 조영술을 통하여 심하복벽동맥과 천공지의 주행을 분석하여 박리에 용이한 유형과 곤란한 유형을 미리 파악함으로써 수술 계획의 수립에 도움을 받을 수 있다.

Keywords

References

  1. Laporta R, Longo B, Sorotos M, Farcomeni A, Amorosi V, Santanelli di Pompeo F. Time-dependent factors in DIEP flap breast reconstruction. Microsurgery. 2017;37:793-9. https://doi.org/10.1002/micr.30203
  2. Marsh D, Patel NG, Rozen WM, Chowdhry M, Sharma H, Ramakrishnan VV. Three routine free flaps per day in a single operating theatre: principles of a process mapping approach to improving surgical efficiency. Gland Surg. 2016;5:107-14.
  3. Mathes DW, Neligan PC. Preoperative imaging techniques for perforator selection in abdomen-based microsurgical breast reconstruction. Clin Plast Surg. 2010;37:581-91, xi. https://doi.org/10.1016/j.cps.2010.06.011
  4. Nahabedian MY. Overview of perforator imaging and flap perfusion technologies. Clin Plast Surg. 2011;38:165-74. https://doi.org/10.1016/j.cps.2011.03.005
  5. Rozen WM, Chubb D, Grinsell D, Ashton MW. Computed tomographic angiography: clinical applications. Clin Plast Surg. 2011;38:229-39. https://doi.org/10.1016/j.cps.2011.03.007
  6. Chubb D, Rozen WM, Ashton MW. Complete absence of the deep inferior epigastric artery: an increasingly detected anomaly detected with the use of advanced imaging technologies. J Reconstr Microsurg. 2010;26:209-10. https://doi.org/10.1055/s-0029-1242140
  7. Garusi C, Lohsiriwat V, de Lorenzi F, Manconi A, de Fiori E, Bellomi M. A subfascial variant of the deep inferior epigastric artery demonstrated by preoperative multidetector computed tomographic angiography: a case report. Microsurgery. 2010;30:156-8.
  8. Heo C, Yoo J, Minn K, Kim S. Circummuscular variant of the deep inferior epigastric perforator in breast reconstruction: importance of preoperative multidetector computed tomographic angiography. Aesthetic Plast Surg. 2008;32:817-9. https://doi.org/10.1007/s00266-008-9219-6
  9. Rozen WM, Houseman ND, Ashton MW. The absent inferior epigastric artery: a unique anomaly and implications for deep inferior epigastric artery perforator flaps. J Reconstr Microsurg. 2009;25:289-93. https://doi.org/10.1055/s-0029-1202553
  10. Whitaker IS, Rozen WM, Smit JM, Dimopoulou A, Ashton MW, Acosta R. Peritoneo-cutaneous perforators in deep inferior epigastric perforator flaps: a cadaveric dissection and computed tomographic angiography study. Microsurgery. 2009;29:124-7. https://doi.org/10.1002/micr.20600
  11. Smit JM, Dimopoulou A, Liss AG, et al. Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J Plast Reconstr Aesthetic Surg. 2009;62:1112-7. https://doi.org/10.1016/j.bjps.2007.12.090
  12. Wade RG, Watford J, Wormald JCR, Bramhall RJ, Figus A. Perforator mapping reduces the operative time of DIEP flap breast reconstruction: a systematic review and metaanalysis of preoperative ultrasound, computed tomography and magnetic resonance angiography. J Plast Reconstr Aesthet Surg. 2018;71:468-77. https://doi.org/10.1016/j.bjps.2017.12.012
  13. Fitzgerald O'Connor E, Rozen WM, Chowdhry M, Band B, Ramakrishnan VV, Griffiths M. Preoperative computed tomography angiography for planning DIEP flap breast reconstruction reduces operative time and overall complications. Gland Surg. 2016;5:93-8.
  14. Keys KA, Louie O, Said HK, Neligan PC, Mathes DW. Clinical utility of CT angiography in DIEP breast reconstruction. J Plast Reconstr Aesthet Surg. 2013;66:e61-5. https://doi.org/10.1016/j.bjps.2012.09.025
  15. Kim EK, Kang BS, Hong JP. The distribution of the perforators in the anterolateral thigh and the utility of multidetector row computed tomography angiography in preoperative planning. Ann Plast Surg. 2010;65:155-60. https://doi.org/10.1097/SAP.0b013e3181c60f60
  16. Katz RD, Manahan MA, Rad AN, Flores JI, Singh NK, Rosson GD. Classification schema for anatomic variations of the inferior epigastric vasculature evaluated by abdominal CT angiograms for breast reconstruction. Microsurgery. 2010;30:593-602. https://doi.org/10.1002/micr.20794
  17. Ireton JE, Lakhiani C, Saint-Cyr M. Vascular anatomy of the deep inferior epigastric artery perforator flap: a systematic review. Plast Reconstr Surg. 2014;134:810-21e. https://doi.org/10.1097/PRS.0000000000000625
  18. Godfrey PM, Godfrey NV, Romita MC. The “circummuscular” free TRAM pedicle: a trap. Plast Reconstr Surg. 1994;93:178-80. https://doi.org/10.1097/00006534-199401000-00029
  19. Hill C, Millar R. Vascular assymetry in a "circummuscular" free TRAM pedicle--a potential hazard. Plast Reconstr Surg. 1997;99:1199-200. https://doi.org/10.1097/00006534-199704000-00061
  20. Bar-Meir ED, Reish RG, Yueh JH, McArdle C, Tobias AM, Lee BT. The Maylard incision: a low transverse incision variant seen in DIEP flap breast reconstruction. J Plast Reconstr Aesthet Surg. 2009;62:e447-52. https://doi.org/10.1016/j.bjps.2008.05.049
  21. Selber JC, Serletti JM. The deep inferior epigastric perforator flap: myth and reality. Plast Reconstr Surg. 2010;125:50-8.
  22. Wang XL, Liu LB, Song FM, Wang QY. Meta-analysis of the safety and factors contributing to complications of MS-TRAM, DIEP, and SIEA flaps for breast reconstruction. Aesthetic Plast Surg. 2014;38:681-91. https://doi.org/10.1007/s00266-014-0333-3