DOI QR코드

DOI QR Code

The Model for Evaluation on Blood Flow of Functional Food in Human Intervention Study

인체에서 식품의 혈행 개선 효능 평가 모델

  • Lim, Yeni (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kwon, Oran (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kim, Ji Yeon (Department of Food Science and Technology, Seoul National University of Science and Technology)
  • 임예니 (이화여자대학교 식품영양학과) ;
  • 권오란 (이화여자대학교 식품영양학과) ;
  • 김지연 (서울과학기술대학교 식품공학과)
  • Received : 2018.11.09
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

The prevalence of atherothrombotic disease continues to rise, presenting an increasing number of challenges to modern society and creating interest in functional foods. Platelet activation, adhesion, and aggregation at vascular endothelial disruption sites are key events in atherothrombotic disease. Physiological challenges such as hyperlipidemia, obesity, and cigarette smoking are associated with vascular changes underlying platelet aggregation and inflammatory processes. However, it is difficult to determine the beneficial response of functional foods in healthy subjects. To address this problem, challenge models and high-risk models related to smokers, obesity, and dyslipidemia are proposed as sensitive measures to evaluate the effects of functional foods in healthy subjects. In this review, we construct a model to evaluate the effects of functional food such as natural products on blood flow based on a human intervention study.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Ueshima H, Sekikawa A, Miura K, Turin TC, Takashima N, Kita Y, et al. Cardiovascular disease and risk factors in Asia: a selected review. Circulation 2008;118:2702-2709. https://doi.org/10.1161/CIRCULATIONAHA.108.790048
  2. Libby P, Okamoto Y, Rocha VZ, Folco E. Inflammation in atherosclerosis: transition from theory to practice. Circ J 2010;74:213-220. https://doi.org/10.1253/circj.CJ-09-0706
  3. Jackson SP. Arterial thrombosis--insidious, unpredictable and deadly. Nat Med 2011;17:1423-1436. https://doi.org/10.1038/nm.2515
  4. Li Z, Delaney MK, O'Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol 2010;30:2341-2349. https://doi.org/10.1161/ATVBAHA.110.207522
  5. Ferroni P, Basili S, Falco A, Davi G. Oxidant stress and platelet activation in hypercholesterolemia. Antioxid Redox Signal 2004;6:747-756. https://doi.org/10.1089/1523086041361587
  6. Cuevas AM, Guasch V, Castillo O, Irribarra V, Mizon C, San Martin A, et al. A high-fat diet induces and red wine counteracts endothelial dysfunction in human volunteers. Lipids 2000;35:143-148. https://doi.org/10.1007/BF02664763
  7. Ceriello A, Bortolotti N, Motz E, Lizzio S, Catone B, Assaloni R, et al. Red wine protects diabetic patients from meal-induced oxidative stress and thrombosis activation: a pleasant approach to the prevention of cardiovascular disease in diabetes. Eur J Clin Invest 2001;31:322-328. https://doi.org/10.1046/j.1365-2362.2001.00818.x
  8. Heptinstall S, May J, Fox S, Kwik-Uribe C, Zhao L. Cocoa flavanols and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults. J Cardiovasc Pharmacol 2006;47 Suppl 2:S197-S205. https://doi.org/10.1097/00005344-200606001-00015
  9. Kardinaal AF, van Erk MJ, Dutman AE, Stroeve JH, van de Steeg E, Bijlsma S, et al. Quantifying phenotypic flexibility as the response to a high-fat challenge test in different states of metabolic health. FASEB J 2015;29:4600-4613. https://doi.org/10.1096/fj.14-269852
  10. Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev 2011;25:155-167. https://doi.org/10.1016/j.blre.2011.03.002
  11. Gross PL, Weitz JI. New antithrombotic drugs. Clin Pharmacol Ther 2009;86:139-146. https://doi.org/10.1038/clpt.2009.98
  12. Steinhubl SR, Moliterno DJ. The role of the platelet in the pathogenesis of atherothrombosis. Am J Cardiovasc Drugs 2005;5:399-408. https://doi.org/10.2165/00129784-200505060-00007
  13. Wopereis S, Wolvers D, van Erk M, Gribnau M, Kremer B, van Dorsten FA, et al. Assessment of inflammatory resilience in healthy subjects using dietary lipid and glucose challenges. BMC Med Genomics 2013;6:44. https://doi.org/10.1186/1755-8794-6-44
  14. Esser D, Oosterink E, op 't Roodt J, Henry RM, Stehouwer CD, Muller M, et al. Vascular and inflammatory high fat meal responses in young healthy men; a discriminative role of IL-8 observed in a randomized trial. PLoS One 2013;8:e53474. https://doi.org/10.1371/journal.pone.0053474
  15. van Mierlo LA, Zock PL, van der Knaap HC, Draijer R. Grape polyphenols do not affect vascular function in healthy men. J Nutr 2010;140:1769-1773. https://doi.org/10.3945/jn.110.125518
  16. Gregersen NT, Bitz C, Krog-Mikkelsen I, Hels O, Kovacs EM, Rycroft JA, et al. Effect of moderate intakes of different tea catechins and caffeine on acute measures of energy metabolism under sedentary conditions. Br J Nutr 2009;102:1187-1194. https://doi.org/10.1017/S0007114509371779
  17. Zwaka TP, Hombach V, Torzewski J. C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation 2001;103:1194-1197. https://doi.org/10.1161/01.CIR.103.9.1194
  18. Fichtlscherer S, Breuer S, Heeschen C, Dimmeler S, Zeiher AM. Interleukin-10 serum levels and systemic endothelial vasoreactivity in patients with coronary artery disease. J Am Coll Cardiol 2004;44:44-49. https://doi.org/10.1016/j.jacc.2004.02.054
  19. Roche HM, Gibney MJ. The impact of postprandial lipemia in accelerating atherothrombosis. J Cardiovasc Risk 2000;7:317-324. https://doi.org/10.1177/204748730000700504
  20. Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 2001;15:2073-2084. https://doi.org/10.1096/fj.01-0273rev
  21. Thorin E, Hamilton CA, Dominiczak MH, Reid JL. Chronic exposure of cultured bovine endothelial cells to oxidized LDL abolishes prostacyclin release. Arterioscler Thromb 1994;14:453-459. https://doi.org/10.1161/01.ATV.14.3.453
  22. Pedreno J, Hurt-Camejo E, Wiklund O, Badimon L, Masana L. Platelet function in patients with familial hypertriglyceridemia: evidence that platelet reactivity is modulated by apolipoprotein E content of very-low-density lipoprotein particles. Metabolism 2000;49:942-949. https://doi.org/10.1053/meta.2000.6742
  23. Stalenhoef AF, de Graaf J. Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL. Curr Opin Lipidol 2008;19:355-361. https://doi.org/10.1097/MOL.0b013e328304b63c
  24. Sinzinger H, Berent R. Platelet function in the postprandial period. Thromb J 2012;10:19. https://doi.org/10.1186/1477-9560-10-19
  25. Coelho RC, Hermsdorff HH, Gomide RS, Alves RD, Bressan J. Orange juice with a high-fat meal prolongs postprandial lipemia in apparently healthy overweight/obese women. Arch Endocrinol Metab 2017;61:263-268. https://doi.org/10.1590/2359-3997000000229
  26. Hodgson JM, Burke V, Puddey IB. Acute effects of tea on fasting and postprandial vascular function and blood pressure in humans. J Hypertens 2005;23:47-54. https://doi.org/10.1097/00004872-200501000-00012
  27. Ono-Moore KD, Snodgrass RG, Huang S, Singh S, Freytag TL, Burnett DJ, et al. Postprandial inflammatory responses and free fatty acids in plasma of adults who consumed a moderately high-fat breakfast with and without blueberry powder in a randomized placebo-controlled trial. J Nutr 2016;146:1411-1419. https://doi.org/10.3945/jn.115.223909
  28. Basu A, Betts NM, Leyva MJ, Fu D, Aston CE, Lyons TJ. Acute cocoa supplementation increases postprandial HDL cholesterol and insulin in obese adults with type 2 diabetes after consumption of a high-fat breakfast. J Nutr 2015;145:2325-2332. https://doi.org/10.3945/jn.115.215772
  29. Lim Y, Lee KW, Kim JY, Kwon O. A beverage of Asiatic plantain extracts alleviated postprandial oxidative stress in overweight hyperlipidemic subjects challenged with a high-fat meal: a preliminary study. Nutr Res 2013;33:704-710. https://doi.org/10.1016/j.nutres.2013.07.003
  30. Hotamisligil GS, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 2008;8:923-934. https://doi.org/10.1038/nri2449
  31. Margioris AN. Fatty acids and postprandial inflammation. Curr Opin Clin Nutr Metab Care 2009;12:129-137. https://doi.org/10.1097/MCO.0b013e3283232a11
  32. Goldstein RE, Redwood DR, Rosing DR, Beiser GD, Epstein SE. Alterations in the circulatory response to exercise following a meal and their relationship to postprandial angina pectoris. Circulation 1971;44:90-100. https://doi.org/10.1161/01.CIR.44.1.90
  33. Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979;60:473-485. https://doi.org/10.1161/01.CIR.60.3.473
  34. Patsch JR, Miesenbock G, Hopferwieser T, Muhlberger V, Knapp E, Dunn JK, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 1992;12:1336-1345. https://doi.org/10.1161/01.ATV.12.11.1336
  35. Tyldum GA, Schjerve IE, Tjonna AE, Kirkeby-Garstad I, Stolen TO, Richardson RS, et al. Endothelial dysfunction induced by post-prandial lipemia: complete protection afforded by high-intensity aerobic interval exercise. J Am Coll Cardiol 2009;53:200-206. https://doi.org/10.1016/j.jacc.2008.09.033
  36. Newby DE, Wright RA, Labinjoh C, Ludlam CA, Fox KA, Boon NA, et al. Endothelial dysfunction, impaired endogenous fibrinolysis, and cigarette smoking: a mechanism for arterial thrombosis and myocardial infarction. Circulation 1999;99:1411-1415. https://doi.org/10.1161/01.CIR.99.11.1411
  37. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol 2004;43:1731-1737. https://doi.org/10.1016/j.jacc.2003.12.047
  38. Jonas MA, Oates JA, Ockene JK, Hennekens CH. Statement on smoking and cardiovascular disease for health care professionals. American Heart Association. Circulation 1992;86:1664-1669. https://doi.org/10.1161/01.CIR.86.5.1664
  39. Price JF, Mowbray PI, Lee AJ, Rumley A, Lowe GD, Fowkes FG. Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease: Edinburgh Artery Study. Eur Heart J 1999;20:344-353. https://doi.org/10.1053/euhj.1998.1194
  40. Negri E, Franzosi MG, La Vecchia C, Santoro L, Nobili A, Tognoni G, et al. Tar yield of cigarettes and risk of acute myocardial infarction. BMJ 1993;306:1567-1570. https://doi.org/10.1136/bmj.306.6892.1567
  41. Glantz SA, Parmley WW. Passive smoking and heart disease. Epidemiology, physiology, and biochemistry. Circulation 1991;83:1-12. https://doi.org/10.1161/01.CIR.83.1.1
  42. Law MR, Morris JK, Wald NJ. Environmental tobacco smoke exposure and ischaemic heart disease: an evaluation of the evidence. BMJ 1997;315:973-980. https://doi.org/10.1136/bmj.315.7114.973
  43. Rhee MY, Na SH, Kim YK, Lee MM, Kim HY. Acute effects of cigarette smoking on arterial stiffness and blood pressure in male smokers with hypertension. Am J Hypertens 2007;20:637-641. https://doi.org/10.1016/j.amjhyper.2006.12.017
  44. Siasos G, Tousoulis D, Kokkou E, Oikonomou E, Kollia ME, Verveniotis A, et al. Favorable effects of concord grape juice on endothelial function and arterial stiffness in healthy smokers. Am J Hypertens 2014;27:38-45. https://doi.org/10.1093/ajh/hpt176
  45. Lanza GA, Spera FR, Villano A, Russo G, Di Franco A, Lamendola P, et al. Effect of smoking on endothelium-independent vasodilatation. Atherosclerosis 2015;240:330-332. https://doi.org/10.1016/j.atherosclerosis.2015.03.041
  46. Bo S, Ciccone G, Castiglione A, Gambino R, De Michieli F, Villois P, et al. Anti-inflammatory and antioxidant effects of resveratrol in healthy smokers a randomized, double-blind, placebo-controlled, cross-over trial. Curr Med Chem 2013;20:1323-1331. https://doi.org/10.2174/0929867311320100009
  47. McVeigh GE, Lemay L, Morgan D, Cohn JN.Effects of long-term cigarette smoking on endothelium-dependent responses in humans. Am J Cardiol 1996;78:668-672. https://doi.org/10.1016/S0002-9149(96)00391-8
  48. Celermajer DS, Sorensen KE, Georgakopoulos D, Bull C, Thomas O, Robinson J, et al. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 1993;88:2149-2155. https://doi.org/10.1161/01.CIR.88.5.2149
  49. Celermajer DS. Endothelial dysfunction: does it matter? Is it reversible? J Am Coll Cardiol 1997;30:325-333. https://doi.org/10.1016/S0735-1097(97)00189-7
  50. Winniford MD, Wheelan KR, Kremers MS, Ugolini V, van den Berg E Jr, Niggemann EH, et al. Smoking-induced coronary vasoconstriction in patients with atherosclerotic coronary artery disease: evidence for adrenergically mediated alterations in coronary artery tone. Circulation 1986;73:662-667. https://doi.org/10.1161/01.CIR.73.4.662
  51. Ghazali WS, Romli AC, Mohamed M. Effects of honey supplementation on inflammatory markers among chronic smokers: a randomized controlled trial. BMC Complement Altern Med 2017;17:175. https://doi.org/10.1186/s12906-017-1703-6
  52. Oyama J, Maeda T, Kouzuma K, Ochiai R, Tokimitsu I, Higuchi Y, et al. Green tea catechins improve human forearm endothelial dysfunction and have antiatherosclerotic effects in smokers. Circ J 2010;74:578-588. https://doi.org/10.1253/circj.CJ-09-0692
  53. Kim Y, Kim KJ, Park SY, Lim Y, Kwon O, Lee JH, et al. Differential responses of endothelial integrity upon the intake of microencapsulated garlic, tomato extract or a mixture: a single-intake, randomized, double-blind, placebo-controlled crossover trial. Food Funct 2018;9:5426-5435. https://doi.org/10.1039/C8FO01431K
  54. Diez-Roux AV, Nieto FJ, Comstock GW, Howard G, Szklo M. The relationship of active and passive smoking to carotid atherosclerosis 12-14 years later. Prev Med 1995;24:48-55. https://doi.org/10.1006/pmed.1995.1007
  55. Howard G, Burke GL, Szklo M, Tell GS, Eckfeldt J, Evans G, et al. Active and passive smoking are associated with increased carotid wall thickness. The Atherosclerosis Risk in Communities Study. Arch Intern Med 1994;154:1277-1282. https://doi.org/10.1001/archinte.1994.00420110125014
  56. Korner J, Aronne LJ. Pharmacological approaches to weight reduction: therapeutic targets. J Clin Endocrinol Metab 2004;89:2616-2621. https://doi.org/10.1210/jc.2004-0341
  57. Seo JB, Choe SS, Jeong HW, Park SW, Shin HJ, Choi SM, et al. Anti-obesity effects of Lysimachia foenum-graecum characterized by decreased adipogenesis and regulated lipid metabolism. Exp Mol Med 2011;43:205-215. https://doi.org/10.3858/emm.2011.43.4.025
  58. Grundy SM. Hypertriglyceridemia, atherogenic dyslipidemia, and the metabolic syndrome. Am J Cardiol 1998;81:18B-25B. https://doi.org/10.1016/S0002-9149(98)00033-2
  59. Matsubara M, Maruoka S, Katayose S. Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab 2002;87:2764-2769. https://doi.org/10.1210/jcem.87.6.8550
  60. Cai Y, Xing G, Shen T, Zhang S, Rao J, Shi R. Effects of 12-week supplementation of Citrus bergamia extracts-based formulation CitriCholess on cholesterol and body weight in older adults with dyslipidemia: a randomized, double-blind, placebo-controlled trial. Lipids Health Dis 2017;16:251. https://doi.org/10.1186/s12944-017-0640-1
  61. Ruscica M, Pavanello C, Gandini S, Gomaraschi M, Vitali C, Macchi C, et al. Effect of soy on metabolic syndrome and cardiovascular risk factors: a randomized controlled trial. Eur J Nutr 2018;57:499-511. https://doi.org/10.1007/s00394-016-1333-7
  62. Gulati S, Misra A, Pandey RM. Effects of 3 g of soluble fiber from oats on lipid levels of Asian Indians - a randomized controlled, parallel arm study. Lipids Health Dis 2017;16:71. https://doi.org/10.1186/s12944-017-0460-3

Cited by

  1. Antiobesity and Antidiabetic Effects of Portulaca oleracea Powder Intake in High-Fat Diet-Induced Obese C57BL/6 Mice vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5587848