DOI QR코드

DOI QR Code

Forced Vibration and Structural Response Prediction for Impeller in Resonant Conditions due to Diffuser Vanes

디퓨저 베인에 기인한 공진조건에서의 임펠러 강제진동 및 구조응답 예측

  • Kim, Yongse (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kong, Dongjae (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Shin, SangJoon (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Park, Kihoon (Hanhwa Power Systems Co., Ltd.) ;
  • Im, Kangsoo (Hanhwa Power Systems Co., Ltd.)
  • Received : 2017.08.04
  • Accepted : 2017.09.30
  • Published : 2018.08.01

Abstract

Impeller blades in the centrifugal compressor are subjected to periodic aerodynamic excitations by interactions between the impeller and the diffuser vanes (DV) in resonant conditions. This may cause high cycle fatigue (HCF) and eventually result in failure of the blades. In order to predict the structural response accurately, the aerodynamic excitation and the major resonant conditions were predicted using unsteady computational fluid dynamics (CFD) and structural analysis. Then, a forced vibration analysis was performed by going through one-way fluid-structure interaction (FSI). A numerical analysis procedure was established to evaluate the structural safety with respect to HCF. The numerical analysis procedure proposed in this paper is expected to contribute toward preventing HCF problems in the initial design stage of an impeller.

원심압축기 임펠러의 블레이드는 임펠러와 디퓨저 베인 간 상호작용에 의해 발생하는 비정상 유동의 공력가진력이 공진조건에서 주기적으로 임펠러를 가진함에 따라 고주기피로 파손이 발생할 수 있다. 이에 대한 정밀한 구조응답 예측을 위해 유동해석과 구조해석을 각기 수행하여 공력가진력과 주요 공진조건을 도출하였다. 이 후 단일방향의 유체-구조 연성 기반의 강제진동 해석을 수행하고, 결과들을 토대로 고주기피로에 대한 구조 안전도를 평가할 수 있는 수치해석 절차를 구축하였다. 본 논문의 수치해석 절차는 임펠러 초기 설계단계에서 고주기피로 문제를 사전에 방지하는데 기여할 것으로 기대된다.

Keywords

References

  1. Zhang, M. and Liu, Y., "The Fatigue of Impellers and Blades," Engineering Failure Analysis, Vol. 62, No. 1, pp. 208-231, 2016. https://doi.org/10.1016/j.engfailanal.2016.02.001
  2. Filsinger, D., Szwedowicz, J. and Schafer, O., “Approach to Unidirectional Coupled CFD-FEM Analysis of Axial Turbocharger Turbine Blades,” Journal of Turbomachinery, Vol. 123, No. 1, pp. 125-131, 2001.
  3. Kou, H., Lin, J. and Zhang, J., "Numerical Study on Vibration Stress of Rotating Fan Blade under Aerodynamic Load at Critical Speed," Journal of Aerospace Engineering, Vol. 230, No. 6, pp. 1044-1058, 2016.
  4. Bang, J.S., Lim, H.S. and Sohn, J.L., "High Cycle Fatigue Estimation of Wide Chord Fan Blisk Considering Rotor-Stator Interaction," 2016 The Korean Society of Propulsion Engineers Fall Conference, Jungsun, Korea, pp. 659-660, Dec. 2016.
  5. Smythe, C.J., "Forced response predictions in modern centrifugal compressor design," Master's Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, M.A., U.S.A., 2005.
  6. Seinturier, E., "Forced Response Computation for Bladed Disks Industrial Practices and Advanced Method," 12th IFToMM Wrold Congress, Besancon, France, pp. 1-17, Jun. 2007.
  7. Singh, M., "SAFE-Diagram-A Design Reliability Tool for Turbine Blading," Proceedings of the 17th Turbomachinery Symposium, Dallas, T.X., U.S.A., pp. 93-101, Nov. 1988.
  8. Connell, S., Hutchinson, B. and Galpin, P., "The Efficient Computation of Transient Flow in Turbine Blade Rows Using Transformation Method," ASME Turbo Expo, Coopenhagen, Denmark, GT-2012-69019, Jun. 2012.
  9. Ziegler, K., Gallus, H. and Niehuis, R., "A Study on Impeller-Diffuser Interaction-Part I: Influence on the Performance," Journal of Turbomachinery, Vol. 125, No. 1, pp.173-182, 2003. https://doi.org/10.1115/1.1516814
  10. Ziegler, K., Gallus, H. and Niehuis, R., “A Study on Impeller-Diffuser Interaction-Part II: Detailed Flow Analysis,” Journal of Turbomachinery, Vol. 125, No. 1, pp. 183-192, 2003. https://doi.org/10.1115/1.1516815
  11. Anonymous, "ANSYS Mechanical APDL Theory Reference," ANSYS lnc., Canonsburg, P.A., U.S.A., 2017.