DOI QR코드

DOI QR Code

Performance of Cooperative NOMA Systems with Cognitive User Relay

상황인지 사용자 릴레이를 채택한 협동 NOMA 시스템의 성능

  • Kim, Nam-Soo (Dept. of Electronic Engineering, Cheongju University)
  • 김남수 (청주대학교 전자공학과)
  • Received : 2018.08.09
  • Accepted : 2018.10.05
  • Published : 2018.10.31

Abstract

Recently, Non-orthogonal multiple access (NOMA) has been focused for the next generation multiple access, which has more spectral efficiency under the limited spectrum bandwidth. Moreover, the spectrum efficiency can be improved by cognitive radio in which the unlicensed secondary users can access the spectrum that is used by the licensed primary user under the limited interference. Hence, we consider the combination of NOMA and cognitive radio, and derive the performance of the cognitive cooperative NOMA system. For the cooperation, a relay is selected among near users, and the selection combining is assumed at a far user. The outage probability of the selected relay and the far user is derived in closed-form, respectively. The provided numerical results are matched well with the Monte Carlo simulation. Numerical results showed that the performance of the relay is affected from the power allocation coefficient, the minimum outage probability is observed at 0.86 of the power allocation coefficient for far user under the given conditions. More than 15 dB of signal-to-noise ratio is required to meet the outage probability of $1{\times}10^{-13}$ for the far user with the frequency acquisition probability of 0.5 compared to that of 1. It shows that the performance of the far user is very sensitive to the acquisition probability of the cognitive relay.

최근 제한된 스펙트럼 대역을 더욱 효율적으로 사용할 수 있는 비직교 다중화 (Non-orthogonal multiple access)방식이 차세대 이동통신 다중화 방식으로 주목받고 있다. 한편 스펙트럼 효율은 상황인지 무선통신으로도 높일 수 있는데, 상황인지 무선통신 방식은 비허가 사용자가 허가사용자에게 제한된 간섭을 주는 조건으로 동일한 스펙트럼을 이용할 수 있기 때문이다. 따라서 본 논문에서는 NOMA 시스템과 상황인지 방식을 결합하였을 때 상황인지 협동 NOMA 시스템의 성능을 분석하였다. 협동 통신을 위한 릴레이는 근거리 사용자 중에서 선택하였으며, 원거리 사용자는 선택결합을 가정하였다. 릴레이 및 원거리 사용자의 오수신율을 closed-form으로 유도하였으며, 수치적인 결과는 Monte Carlo 시뮬레이션 결과와 잘 일치하였다. 수치적인 해석결과 릴레이의 오수신율은 전력할당 계수에 따라서 영향을 받았으며, 주어진 조건에서 원거리 사용자의 전력할당계수가 0.86인 경우 오수신율이 가장 낮았다. 원거리 사용자의 오수신율은 주어진 상황 하에서 주파수 획득확률이 1인 경우에 비하여 0.5인 경우 $1{\times}10^{-13}$의 오수신율을 유지하기 위하여 15 dB 이상의 신호 대 잡음비가 더 필요하였다. 따라서 상황인지 릴레이의 주파수 획득확률에 따라서 원거리 사용자의 성능이 현저히 영향을 받음을 알 수 있었다.

Keywords

References

  1. Y.Saito, Y. Kishiyama, and A. Benjebbour, "Non-orthogonal multiple access (NOMA) for cellular future radio access," Proc. of Veh. Tech. Conf. (VTC spring), pp. 1-5, June 2013.
  2. L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, "Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends," IEEE Communications Magazine, Vol.53, No.9, pp.74-81, Sep. 2015. https://doi.org/10.1109/MCOM.2015.7263349
  3. Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, "System-level performance evaluation of downlink non-orthogonal multiple access (NOMA)," Proc. of Annual Int. Sym. on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 611-615, Sept. 2013.
  4. P. Xu, Z. Yang, Z. Ding, and Z. Zhang, "Optimal relay selection schemes for cooperative NOMA," IEEE Trans. on Vehicular Technology, to be appear in April 2018.
  5. Z. Ding, H. Dai, H. V. Poor, "Relay selection for cooperative NOMA," IEEE Wireless Communications Letters, Vol.5, No.4, pp.416-419, 2016. https://doi.org/10.1109/LWC.2016.2574709
  6. Z. Ding, M. Peng, and H. V. Poor, "Cooperative non-orthogonal multiple access in 5G systems," IEEE Communications Letters, Vol.19, No.8, pp. 1462-1465, June 2015. https://doi.org/10.1109/LCOMM.2015.2441064
  7. Y. Liu, Z. Ding, M. Elkashlan, and H. V.Poor, "Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer," IEEE Journal on Selected Areas in Communications, Vol.34, No.4, pp.938-953, March 2016. https://doi.org/10.1109/JSAC.2016.2549378
  8. N.-S. Kim, "Utilization of max-min user relay in cooperative NOMA systems," Journal of Telecommunications, Electronic and Computer Engineering, Vol.10, No.1-4, pp.89-94, March 2018.
  9. S. Haykin, "Cognitive radio: brain-empowered wireless communications," IEEE Journal on Selected Areas in Communications, Vol.23, No.2, pp.201-220, Feb. 2005. https://doi.org/10.1109/JSAC.2004.839380
  10. A. Ghasemi and E. Sousa, "Spectrum sensing in cognitive radio networks: requirements, challenges and design trade-offs," IEEE Communications Magazine, Vol.46, No.5, pp.32-39, April 2008. https://doi.org/10.1109/MCOM.2008.4511642
  11. Y. Liu, Z. Ding, M. Elkashlan, and J. Yuan, "Non-orthogonal multiple access in large-scale underlay cognitive radio networks," IEEE Tr. On Vehicular Technology, Vol.65, No.12, pp.10152- 10157, Dec. 2016. https://doi.org/10.1109/TVT.2016.2524694
  12. M. Zeng, G. I. Tsiropoulos, O. A. Dobre, and M. H. Ahmed, "Power allocation for cognitive radio networks employing non-orthogonal multiple access," Proc. of GLOCOM, pp. 1-5, Feb. 2016.
  13. L. Lv, J. Chen, and Q. Ni, "Cooperative non-orthogonal multiple access in cognitive radio," IEEE Communications Letters, Vol.20, No.10, pp.2059-2062, Oct. 2016. https://doi.org/10.1109/LCOMM.2016.2596763
  14. N.-S Kim, "Optimum power allocation of cooperative NOMA systems based on user relay," Journal of The Institute of Internet, Broadcasting and Communication, Vol. 17, No. 5, pp.25-33, Oct. 2017. https://doi.org/10.7236/JIIBC.2017.17.5.25
  15. H. Saraweera, P. Smith, and N. Surobhi, "Exact outage probability of cooperative diversity with opportunistic spectrum access," Proc. of International Conf. on Commu. Workshops(ICC), pp.79-84, May 2008.
  16. K. Lee and A. Yener, "Outage performance of cognitive wireless relay networks," Proc. of Globecom, pp.1-5, Nov. 2006.