DOI QR코드

DOI QR Code

Development of Predictive Model of Social Activity for the Elderly in Korea using CRT Algorithm

CRT 알고리즘을 이용한 우리나라 노인의 사회활동 영향요인 예측 모형 개발

  • Byeon, Haewon (Department of Speech Language Pathology, Honam University)
  • 변해원 (호남대학교 보건과학대학 언어치료학과)
  • Received : 2018.07.11
  • Accepted : 2018.10.20
  • Published : 2018.10.28

Abstract

The social activities of the elderly are important in successfully achieving aging by providing opportunities for social interaction to enhance life satisfaction. The purpose of this study is to identify the related factors of the elderly social activities and build a statistical classification model to predict social activities. Subjects were 1,864 elderly people (829 males, 1,035 females) who completed the community health survey in 2015. Outcome variables were defined as the experience of social activity during the past month(yes, no). The prediction model was constructed using decision tree model based on Classification and Regression Trees (CRT) algorithm. The results of this study were subjective health, frequency of meeting with neighbors, frequency of meeting with relatives, and living with spouse were significant variables of social participation. The most prevalent predictor was the subjective health level. In order to prepare for the successful aging of the super aged society based on the results of this study, social attention and support for the social activities of the elderly are required.

노년기의 사회참여는 사회적 상호작용의 기회를 제공하여 삶의 만족감을 고취시키기 때문에 성공적인 노화를 달성하기 위해서 중요하다. 이 연구는 우리나라 지역사회 노인을 대상으로 노년기 사회 활동의 관련요인과 사회 참여를 예측하는 통계적 분류 모형을 구축하였다. 분석 대상은 2015년도 지역사회 건강조사를 완료한 60세 이상 노인 1,864명(남 829명, 여 1,035명)이었다. 결과 변수는 지난 1달 간 사회 활동 경험(있음, 없음)으로 정의하였다. 예측모형은 Classification and Regression Trees(CRT) 알고리즘 기반 의사결정나무모형을 이용하여 구축하였다. 연구결과, 사회참여의 유의미한 분류 변수는 주관적 건강, 이웃과의 만남빈도, 친척과의 만남빈도, 배우자 동거여부이었고, 그 중에서도 가장 우선적으로 관여하는 예측 요인은 주관적 건강수준이었다. 본 연구의 결과를 기초로 도래하는 초고령사회의 성공적인 노화를 대비하기 위해서 노인의 사회 활동에 대한 사회적 관심과 지원이 요구된다.

Keywords

References

  1. M. Hwang & S. Jung. (2011). The ageing society of Korea and the population estimate. Korea Journal of Population Studies, 34(2), 113-133. UCI : http://uci.or.kr/G704-000152.2011.34.2.004
  2. A. Sarvimäki & B. Stenbock‐Hult. (2000). Quality of life in old age described as a sense of well‐being, meaning and value. Journal of Advanced Nursing, 32(4), 1025-1033. DOI: https://doi.org/10.1046/j.1365-2648.2000.01568.x
  3. S. Kwon & M. R. Reich. (2005). The changing process and politics of health policy in Korea. Journal of Health Politics Law, 30(6), 1003-1026. DOI: https://doi.org/10.1215/03616878-30-6-1003
  4. V. H. Menec. (2003). The relation between everyday activities and successful aging: A 6-year longitudinal study. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 58(2). S74-S82. DOI: https://doi.org/10.1093/geronb/58.2.S74
  5. K. R. Fox. (1999). The influence of physical activity on mental well-being. Public health nutrition, 2(3a), 411-418. DOI: https://doi.org/10.1017/S1368980099000567
  6. T. W. Lee, I. S. Ko & K. J. Lee. (2006). Health promotion behaviors and quality of life among community-dwelling elderly in Korea: A cross-sectional survey. International journal of nursing studies, 43(3), 293-300. DOI: https://doi.org/10.1016/j.ijnurstu.2005.06.009
  7. M. Tajvar, M. Arab & A. Montazeri. (2008). Determinants of health-related quality of life in elderly in Tehran, Iran. BMC public health, 8(1), 323. DOI: https://doi.org/10.1186/1471-2458-8-323
  8. A. Bowling & P. Dieppe. (2005). What is successful ageing and who should define it?. Bmj, 331(7531), 1548-1551. DOI: https://doi.org/10.1136/bmj.331.7531.1548
  9. H. Byeon. (2015). The factors of participating in a smoking cessation program using integrated method of decision tree and neural network algorithm. Journal of the Korea Convergence Society, 6(2), 25-30. DOI : 10.15207/JKCS.2015.6.2.025
  10. Korea Center for Disease Control and Prevention. (2017). National sample design for 2015 community health survey. Seoul: Korean Association for Survey Research.
  11. J. Choi & D. Seo. (1999). Decision trees and its applications. Journal of Korean Official Statistics, 4(1), 61-83.
  12. Y. Takeyachi, S. I. Konno, K. Otani, K. Yamauchi, I. Takahashi, Y. Suzukamo & S. I. Kikuchi. (2003). Correlation of low back pain with functional status, general health perception, social participation, subjective happiness, and patient satisfaction. Spine, 28(13), 1461-1466. DOI: 10.1097/01.BRS.0000067091.88283.B6
  13. M. Pinquart. (2001). Correlates of subjective health in older adults: A meta-analysis. Psychology and aging, 16(3), 414-426. https://doi.org/10.1037//0882-7974.16.3.414
  14. T. E. Seeman, T. M. Lusignolo, M. Albert & L. Berkman. (2001). Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur studies of successful aging. Health psychology, 20(4), 243. DOI: http://dx.doi.org/10.1037/0278-6133.20.4.243
  15. H. G. Koo. (2016). A study on proposal to develop senior related policies : convergence approach of both age norm and hoping activities. Journal of Digital Convergence, 14(4), 101-110. DOI : http://doi.org/10.14400/JDC.2016.14.4.101