DOI QR코드

DOI QR Code

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion

수중폭발에 의한 해중터널의 동적거동

  • Hong, Kwan-Young (Ocean Engineering R&D Center, CGO Corporation) ;
  • Lee, Gye-Hee (Department of Ocean Civil Engineering, Mokpo National Maritime Univ.) ;
  • Lee, Seong-Lo (Department of Construction Engineering, Mokpo National Univ.)
  • 홍관영 ((주)씨지오 해양공학연구소) ;
  • 이계희 (목포해양대학교 해양건설공학과) ;
  • 이성로 (목포대학교 건축토목공학과)
  • Received : 2018.05.25
  • Accepted : 2018.09.19
  • Published : 2018.10.31

Abstract

In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.

본 논문에서는 수중폭발(UE: underwater explosion)에 의한 해중터널(SFT: submerged floating tunnel)의 동적거동을 양해법(explicit)를 이용하는 LS-DYNA에 의한 유한요소해석을 통하여 분석하였다. SFT의 유한요소모델은 원형단면의 강재 라이너에 콘크리트가 채워진 복합재 원형단면으로 고려되었다. 해중터널 시스템의 중앙부 100m 구간은 탄소성재료를 고려한 솔리드(solid)요소로 상세하게 모델링하였으며, 양측 방향으로 각각 1km 구간에 대해서는 탄성재료를 고려하여 빔(beam) 요소로 이상화하여 모델링하였다. 사선계류시스템은 케이블(cable)요소를 적용하였으며, 수중폭발에 의한 동적거동시 수리동적질량의 영향을 고려하기 위하여 원형단면에 대한 추가질량을 고려하였다. 또한 부력과 같은 상시하중을 초기조건으로 고려하기 위하여 동적완화해석(dynamic relaxation analysis)를 수행하였다. UE는 부력비(B/W)와 폭발지점으로부터 거리의 변화에 대해서 고려하였으며, 폭발의 규모는 천안함 합동조사보고서(2010)를 참조하여 TNT 360kg로 결정하였다. 수중폭발 해석결과, 폭발지점으로부터 SFT까지 거리는 관입량, 충격압력의 크기와 반비례 관계에 있고, 부력비(B/W)가 커질수록 계류장력도 커짐을 확인하였다. 그러나 사선계류라인의 계류각 변화는 SFT의 수평거동, 관입량, 계류력, 충격압력과의 연관성을 찾을 수가 없었다.

Keywords

References

  1. Hong, K.Y., Lee, G.H., Phu, T.D. (2014) Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel, Comput. Struct. Eng. Inst. Korea, 27(3), pp.369-377. https://doi.org/10.7734/COSEIK.2014.27.5.369
  2. Li, J., Lv, X., Tan, J. (2012) Research on the Response of Submerged Floating Tunnel under Fatigue Loads, Proc. Eng., 31, pp.447-452. https://doi.org/10.1016/j.proeng.2012.01.1050
  3. Livermore Software Technology Corporation (2006) LS-DYNA Theory manual.
  4. Long, X., Ge, F., Wang, L., Hong, Y. (2009) Effects of Fundamental Structure Parameters on Dynamic Responses of Submerged Floating Tunnel under Hydrodynamic Loads, Acta Mech Shin, 25, pp.335-344. https://doi.org/10.1007/s10409-009-0233-y
  5. Mazzolani, F.M., Faggiano, B., Martire, G. (2010) Design Aspects of the AB Prototype in the Qiandao Lake, Int. Symp. Arch. Bridge, 4, pp.21-33.
  6. Mazzolani, F.M., Landolfo, R., Faggiano, B., Esposto, M. (2007) A Submerged Floating Tunnel (Archimedes Bridge) Prototype in the Qiandao Lake (PR of China)_Research Development and Basic Design, Costruzioni Metalliche, pp.47-51.
  7. Ministry of National Defense Republic of Korea (2010) On the Attack Against ROK Ship Cheonan, Joint Investigation Report.
  8. Papadrakakis, M. (1981) A Method for the Automated Evaluation of the Dynamic Relaxation Parameters, Comput. Methods Appl. Mech. Eng., 25, pp.35-48. https://doi.org/10.1016/0045-7825(81)90066-9
  9. Pilato, M.D., Perotti, F., Fogazzi, P. (2008) 3D Dynamic Response of Submerged Floating Tunnels under Seismic and Hydrodynamic Excitation, Eng. Struct., 30, pp.268-281. https://doi.org/10.1016/j.engstruct.2007.04.001
  10. Seo, S.I., Kim, J.S. (2013) Simplified Collision Analysis Method for Submerged Floating Railway Using the Theory of a Beam with an Elastic Foundation, Korean Soc. Railw., 16(3), pp.202-206. https://doi.org/10.7782/JKSR.2013.16.3.202
  11. Veritas, D.N. (2010) DNV-RP-C204, Design Against Accidental Loads.
  12. Webster, K.G. (2007) Investigation of Close Proximity Underwater Explosion Effects on a Ship-Like Structure Using the Multi-Material Arbitrary Lagrangian Eulerian Finite Element Method, Ocean Engineering, Blacksburg, Virginia.