DOI QR코드

DOI QR Code

Combination Drug Release of a Nanofiber Membrane Fabricated by Coaxial Dual Electrospinning

동축 이중 전기방사에 의해 성형한 나노섬유막의 복합약물 방출

  • Kim, Min Soo (Department of Biomaterial Science, Pusan National University) ;
  • Kim, Hong Sung (Department of Biomaterial Science, Pusan National University)
  • 김민수 (부산대학교 바이오소재과학과) ;
  • 김홍성 (부산대학교 바이오소재과학과)
  • Received : 2018.08.31
  • Accepted : 2018.10.01
  • Published : 2018.10.31

Abstract

Coaxial dual electrospun nanofibers were designed for the sustained release of combination drugs. The nanofibers had a sheath-core structure composed of poly(ethylene oxide)/poly(D,L-lactic acid) blend in the sheath and poly(D,L-lactic acid) with drugs in the core. The properties as a carrier in a drug delivery system were analyzed using Fourier transform infrared spectrophotometry, X-ray diffractometry, scanning electron microscopy, and field emission transmission electron microscopy. The release behaviors of the combination drug of methotrexate/probucol were tested. Cumulative release amounts were proportionally increased according to the increased poly(ethylene oxide) ratio in the sheath. The initial release of probucol was approximately half that of methotrexate. In long-term release, the release rate of methotrexate decreased relatively, but that of probucol remained steady. The drug-diffusion milieu in the sheath of the coaxial nanofiber greatly affected the short- and long-term release of the drugs. The possibility of classified release control by components in combination drugs was ascertained.

Keywords

References

  1. J. V. Patil, S. S. Mali, A. S. Kamble, C. K. Hong, J. H. Kim, and P. S. Patil, "Electrospinning: A Versatile Technique for Making of 1D Growth of Nanostructured Nanofibers and Its Applications: An Experimental Approach", Appl. Surface Sci., 2017, 423, 641-674. https://doi.org/10.1016/j.apsusc.2017.06.116
  2. M. Liu, X. Duan, Y. Li, D. Yang, and Y. Long, “Electrospun Nanofibers for Wound Healing”, Mater. Sci. Eng.: C, 2017, 76, 1413-1423. https://doi.org/10.1016/j.msec.2017.03.034
  3. F. Mohammadian and A. Eatemadi, "Drug Loading and Delivery Using Nanofibers Scaffolds", Artif. Cells, Nanomed. and Biotechnol., 2017, 45, 881-888. https://doi.org/10.1080/21691401.2016.1185726
  4. J. Pelipenko, P. Kocbek, and J. Kristl, "Critical Attributes of Nanofibers: Preparation, Drug Loading, and Tissue Regeneration", Int. J. Pharmaceut., 2015, 484, 57-74. https://doi.org/10.1016/j.ijpharm.2015.02.043
  5. A. Abdal-hay, M. Bartnikowski, S. Hamlet, and S. Ivanovski, “Electrospun Biphasic Tubular Scaffold with Enhanced Mechanical Properties for Vascular Tissue Engineering”, Mater. Sci. Eng.: C, 2018, 82, 10-18. https://doi.org/10.1016/j.msec.2017.08.041
  6. S. Yan, L. Xiaoqiang, L. Shuiping, M. Xiumei, and S. Ramakrishna, “Controlled Release of Dual Drugs from Emulsion Electrospun Nanofibrous Mats”, Colloids and Surfaces B: Biointerfaces, 2009, 73, 376-381. https://doi.org/10.1016/j.colsurfb.2009.06.009
  7. S. Thakkar and M. Misra, "Electrospun Polymeric Nanofibers: New Horizons in Drug Delivery", Eur. J. Pharmaceut. Sci., 2017, 107, 148-167. https://doi.org/10.1016/j.ejps.2017.07.001
  8. Q. Zhang, Y. Li, Z. Y. Lin, K. K.Y. Wong, M. Lin, L. Yildirimer, and X. Zhao, “Electrospun Polymeric Micro/nanofibrous Scaffolds for Long-term Drug Release and Their Biomedical Applications”, Drug Discovery Today, 2017, 22, 1351-1366. https://doi.org/10.1016/j.drudis.2017.05.007
  9. W. Feng, P. Liu, H. Yin, Z. Gu, Y. Wu, W. Zhu, Y. Liu, H. Zheng, and X. MO, "Heparin and Rosuvastatin Calciumloaded Poly(L-lactide-co-caprolactone) Nanofiber-covered Stent-grafts for Aneurysm Treatment", New J. Chem., 2017, 41, 9014-9023. https://doi.org/10.1039/C7NJ01214D
  10. S. Chou, D. Carson, and K. A. Woodrow, “Current Strategies for Sustaining Drug Release from Electrospun Nanofibers”, J. Controlled Release Part B, 2015, 220, 584-591. https://doi.org/10.1016/j.jconrel.2015.09.008
  11. Z. Sultanova, G. Kaleli, G. Kabay, and M. Mutlu, "Controlled Release of a Hydrophilic Drug from Coaxially Electrospun Polycaprolactone Nanofibers", Int. J. Pharmaceut., 2016, 505, 133-138. https://doi.org/10.1016/j.ijpharm.2016.03.032
  12. A. Yin, R. Luo, J. Li, X. Mo, Y. Wang, and X. Zhang, “Coaxial Electrospinning Multicomponent Functional Controlledrelease Vascular Graft: Optimization of Graft Properties”, Colloids and Surfaces B: Biointerfaces, 2017, 152, 432-439. https://doi.org/10.1016/j.colsurfb.2017.01.045
  13. Y. Tang, L. Chen, K. Zhao, Z. Wu, Y. Wang, and Q. Tan, "Fabrication of PLGA/HA (core)-collagen/amoxicillin (shell) Nanofiber Membranes through Coaxial Electrospinning for Guided Tissue Regeneration", Compos. Sci. Technol., 2016, 125, 100-107. https://doi.org/10.1016/j.compscitech.2016.02.005
  14. R. Chen, C. Huang, Q. Ke, C. He, H. Wang, and X. Mo, "Preparation and Characterization of Coaxial Electrospun Thermoplastic Polyurethane/collagen Compound Nanofibers for Tissue Engineering Applications", Colloids and Surfaces B: Biointerfaces, 2010, 79, 315-325. https://doi.org/10.1016/j.colsurfb.2010.03.043
  15. J. Wang, B. Sun, L. Tian, X. He, Q. Gao, T. Wu, S. Ramakrishna, J. Zheng, and X. Mo, "Evaluation of the Potential of rhTGF-${\beta}3$ Encapsulated P(LLA-CL)/collagen Nanofibers for Tracheal Cartilage Regeneration Using Mesenchymal Stems Cells Derived from Wharton's Jelly of Human Umbilical Cord", Mater. Sci. Eng. C, 2017, 70, 637-645. https://doi.org/10.1016/j.msec.2016.09.044
  16. P. Coimbra, P. Santos, P. Alves, S. P. Miguel, M. P. Carvalho, K. D. Sa, I. J. Correia, and P. Ferreira, "Coaxial Electrospun PCL/Gelatin-MA Fibers as Scaffolds for Vascular Tissue Engineering", Colloids and Surfaces B: Biointerfaces, 2017, 159, 7-15. https://doi.org/10.1016/j.colsurfb.2017.07.065
  17. V. M. Merkle, D. Martin, M. Hutchinson, P. L. Tran, A. Behrens, S. Hossainy, J. Sheriff, D. Bluestein, X. Wu, and M. J. Slepian, “Hemocompatibility of Poly(vinyl alcohol)-Gelatin Core-Shell Electrospun Nanofibers: A Scaffold for Modulating Platelet Deposition and Activation”, ACS Appl. Materer. Interfaces, 2015, 7, 8302-8312. https://doi.org/10.1021/acsami.5b01671
  18. M. He, J. Xue, H. Geng, H. Gu, D. Chen, R. Shi, and L. Zhang, "Fibrous Guided Tissue Regeneration Membrane Loaded with Anti-inflammatory Agent Prepared by Coaxial Electrospinning for Thepurpose of Controlled Release", Appl. Surface Sci., 2015, 335, 121-129. https://doi.org/10.1016/j.apsusc.2015.02.037
  19. Y. Jiang, H. Mo, and D. Yu, "Electrospun Drug-loaded Core-sheath PVP/zein Nanofibers for Biphasic Drug Release", Int. J. Pharmaceut., 2012, 438, 232-239. https://doi.org/10.1016/j.ijpharm.2012.08.053
  20. T. T. T. Nguyen, O. H. Chung, and J. S. Park, "Coaxial Electrospun Poly(lactic acid)/chitosan (core/shell) Composite Nanofibers and Their Antibacterial Activity", Carbohydr. Polym., 2011, 86, 1799-1806. https://doi.org/10.1016/j.carbpol.2011.07.014
  21. Y. Yang, T. Xia, W. Zhi, L. Wei, J. Weng, C. Zhang, and X. Li, “Promotion of Skin Regeneration in Diabetic Rats by Electrospun Core-sheath Fibers Loaded with Basic Fibroblast Growth Factor”, Biomaterials, 2011, 32, 4243-4254. https://doi.org/10.1016/j.biomaterials.2011.02.042
  22. H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu, and W. Chen, “A Facile Technique to Prepare Biodegradable Coaxial Electrospun Nanofibers for Controlled Release of Bioactive Agents”, J. Controlled Release, 2005, 108, 237-243. https://doi.org/10.1016/j.jconrel.2005.08.006
  23. J. Liu, C. Wang, J. Wang, H. Ruan, and C. Fan, “Peripheral Nerve Regeneration Using Composite Poly(lactic acidcaprolactone)/nerve Growth Factor Conduits Prepared by Coaxial Electrospinning”, J. Biomed. Mater. Res. Part A, 2011, 96, 13-20.
  24. H. Huang, C. He, H. Wang, and X. Mo, “Preparation of Coreshell Biodegradable Microfibers for Long-term Drug Delivery”, J. Biomed. Mater. Res. Part A, 2009, 90, 1243-1251.
  25. M. M. Castillo-Ortega, A. Najera-Luna, D. E. Rodriguez-Felix, J. C. Encinas, F. Rodriguez-Felix, J. Romero, and P. J. Herrera-Franco, "Preparation, Characterization and Release of Amoxicillin from Cellulose Acetate and Poly(vinyl pyrrolidone) Coaxial Electrospun Fibrous Membranes", Mater. Sci. Eng. C, 2011, 31, 1772-1778. https://doi.org/10.1016/j.msec.2011.08.009
  26. Q. Gao, C. Huang, B. Sun, B. M. Aqeel, J. Wang, W. Chen, X. Mo, and X. Wan, "Fabrication and Characterization of Metal Stent Coating with Drug-loaded Nanofiber Film for Gallstone Dissolution", J. Biomater. Appl., 2016, 31, 784-796. https://doi.org/10.1177/0885328216671239
  27. J. H. Lee, H. B. Lee, and J. D. Andrades, "Bood Compatibility of Polyethylene Oxide Surfaces", Progr. Polym. Sci., 1995, 20, 1043-1079. https://doi.org/10.1016/0079-6700(95)00011-4
  28. A. S. Puranik, E. R. Dawson, and N. A. Peppas, "Recent Advances in Drug Eluting Stents", Int. J. Pharmaceut., 2013, 441, 665-679. https://doi.org/10.1016/j.ijpharm.2012.10.029
  29. B. Marjan and O. Magdalena, "In-Stent Restenosis in Drug-Eluting Stents: Issues and Therapeutic Approach", J. Cardiol. Current Res., 2016, 6, 206-212.
  30. V. N. Patel, A. Angbohang, and L. Zeng, "In-Stent Restenosis: Is Low Shear Stress to Blame?", J. Cardiol. Clinical Res., 2017, 5, 1106-1111.
  31. M. Sajadian, L. Alizadeh, M. Ganjifard, A. Mardani, M. A. Ansari, and H. Falsoleiman, "Factors Affecting In-stent Restenosis in Patients Undergoing Percutaneous Coronary Angioplasty", Galen Med. J., 2018, 7, 961-968.
  32. R. Zhang, S. Chen, H. Zhang, Q. Liu, J. Xing, Q. Zhao, Y. Wang, B. Yu, and J. Hou, “Effects of Methotrexate in a Rabbit Model of In-Stent Neoatherosclerosis: An Optical Coherence Tomography Study”, Scientific Reports, 2016, 6, 33657. https://doi.org/10.1038/srep33657
  33. W. Kim, M. H. Jeong, K. S. Cha, S. H. Lee, J. H. Lim, H. G. Kim, H. W. Park, Y. J. Hong, O. Y. Park, J. H. Kim, Y. K. Ahn, J. T. Park, M. H. Kim, J. G. Cho, J. C. Park, and J. C. Kang, “The Effect of the Probucol-loaded biodivYsioTM DD Stent on Inhibition of Neointimal Proliferation in Porcine Coronary Stent Restenosis Model”, Korean Circulation Journal, 2003, 33, 1028-1035. https://doi.org/10.4070/kcj.2003.33.11.1028
  34. R. Thipparaboina, W. Khan, and A. J. Domb, "Eluting Combination Drugs from Stents", Int. J. Pharmaceut., 2013, 454, 4-10. https://doi.org/10.1016/j.ijpharm.2013.07.005
  35. T. Inoue, K. Croce, T. Morooka, M. Sakuma, K. Node, and D. I. Simon, “Vascular Inflammation and Repair”, Cardiovascular Interventions, 2011, 4, 1057-1066. https://doi.org/10.1016/j.jcin.2011.05.025
  36. B. W. Chieng, N. A. Ibrahim, W. M. Z. W. Yunus, and M. Z. Hussein, “Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets”, Polymers, 2014, 6, 93-104.
  37. B. Sibeko, Y. E. Choonara, L. C. du Toit, G. Modi, D. Naidoo, R. A. Khan, P. Kumar, V. M. K. Ndesendo, S. E. Iyuke, and V. Pillay, "Composite Polylactic-Methacrylic Acid Copolymer Nanoparticles for the Delivery of Methotrexate", J. Drug Delivery, 2012, Article ID 579629.
  38. P. L. Ritger and N. A. Peppas, "A Simple Equation for Description of Solute Release I. Fickian and Non-fickian Release from Non-swellable Devices in the form of Slabs, Spheres, Cylinders Or Discs", J. Controlled Release, 1987, 5, 23-36. https://doi.org/10.1016/0168-3659(87)90034-4
  39. L. L. Lao, N. A. Peppas, F. Y. C. Boey, and S. S. Venkatraman, "Modeling of Drug Release from Bulk-degrading Polymers", Int. J. Pharmaceut., 2011, 418, 28-41. https://doi.org/10.1016/j.ijpharm.2010.12.020
  40. K. Vedantham, S. Chaterji, S. W. Kim, and K. Park, "Development of a Probucol- Releasing Antithrombogenic Drug Eluting Stent", J. Biomed. Mater. Res. B: Appl. Biomater., 2012, 100B, 1068-1077. https://doi.org/10.1002/jbm.b.32672
  41. K. Fukushima, J. L. Feijoo, and M. Yang, "Comparison of Abiotic and Biotic Degradation of PDLLA, PCL and Partially Miscible PDLLA/PCL Blend", Eur. Polym. J., 2013, 49, 706-717. https://doi.org/10.1016/j.eurpolymj.2012.12.011