DOI QR코드

DOI QR Code

Localized Surface-Plasmon Resonance of Ag Nanoparticles Produced by Laser Dewetting to Improve the Performance of a Sensitized TiO2 Solar Cell

레이저 Dewetting에 의해 형성된 은 나노입자의 국소 표면플라즈몬 공명을 이용한 감응형 TiO2 태양전지 성능 향상

  • Lee, Jeeyoung (Department of Materials Science and Engineering, Yonsei University) ;
  • Lee, Myeongkyu (Department of Materials Science and Engineering, Yonsei University)
  • 이지영 (연세대학교 신소재공학과) ;
  • 이명규 (연세대학교 신소재공학과)
  • Received : 2018.06.03
  • Accepted : 2018.09.07
  • Published : 2018.10.25

Abstract

In this paper we show that the localized surface-plasmon resonance of Ag nanoparticles produced by laser dewetting can be effectively utilized for improving the photocurrent and efficiency of a dye-sensitized $TiO_2$ solar cell. An Ag thin film deposited on a conducting glass substrate was dewetted into nanoparticles by a pulsed laser. A dye-sensitized $TiO_2$ solar cell fabricated on this substrate containing the Ag nanoparticles exhibited improved photovoltaic performance, compared to a reference cell. This is attributed to the increased light trapping that arises from the localized surface-plasmon resonance of the dewetted Ag nanoparticles.

본 논문에서는 레이저 dewetting에 의해 형성된 은 나노입자들의 국소 표면플라즈몬 공명이 감응형 $TiO_2$ 태양전지의 전류밀도 및 효율 향상에 유용하게 이용될 수 있음을 보여준다. 전도성 유리기판 위에 증착된 은 박막을 펄스 레이저 조사에 의해 나노입자로 변환시킨 후 이 기판을 사용하여 감응형 $TiO_2$ 태양전지 셀을 제조한 결과, 은 나노입자를 포함하지 않은 대조군 셀에 비해 성능이 보다 향상됨을 확인하였다. 이는 은 나노입자들에 의한 국소 표면플라즈몬 공명 현상으로 인해 가시광 영역에서의 광수확이 증대되었기 때문으로 분석된다.

Keywords

References

  1. H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," Nat. Mater. 9, 205-213 (2010). https://doi.org/10.1038/nmat2629
  2. I.-K. Ding, J. Zhu, W. Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. McGehee, "Plasmonic dye-sensitized solar cell," Adv. Energy. Mater. 1, 52-57 (2011). https://doi.org/10.1002/aenm.201000041
  3. K.-T. Lee, J.-Y. Jang, J. Zhang, S.-M. Yang, S. Park, and H. J. Park, "Highly efficient colored perovskite solar cells integrated with ultrathin subwavelength plasmonic nanoresonators," Sci. Report 7, 10640 (2017). https://doi.org/10.1038/s41598-017-10937-3
  4. W.-Y. Rho, D. H. Song, H.-Y. Yang, H.-S. Kim, B. S. Son, J. S. Suh, and B.-H. Jun, "Recent advances in plasmonic dye-sensitized solar cells," J. Solid State. Chem. 258, 271-282 (2018). https://doi.org/10.1016/j.jssc.2017.10.018
  5. J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, "Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure," ACS Nano 5, 7108-7116 (2011). https://doi.org/10.1021/nn201808g
  6. M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D'Innocenzo, A. Petrozza, M. M. Lee, U. Wiesner, and H. J. Snaith, "Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles," Nano Lett. 11, 438-445 (2010).
  7. H. Choi, W. T. Chen, and P. V. Kamat, "Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells," ACS Nano 6, 4418-4427 (2012). https://doi.org/10.1021/nn301137r
  8. V.-D. Dao and H.-S. Choi, "Highly-efficient plasmon-enhanced dye-sensitized solar cells created by means of dry plasma reduction," Nanomaterials 6, 70 (2016). https://doi.org/10.3390/nano6040070
  9. H. Dong, Z. Wu, Y. Cao, A. El-Shafei, B. Jiao, Y. Dai, and X. Hou, "A nanostructure-based counter electrode for dye-sensitized solar cells by assembly of silver nanoparticles," Org. Electron. 15, 1641-1649 (2014). https://doi.org/10.1016/j.orgel.2014.03.004
  10. S.-J. Lin, K.-C. Lee, J.-L. Wu, J.-Y. Wu, "Plasmon-enhanced photocurrent in dye-sensitized solar cells," Sol. Energy 86, 2600-2605 (2012). https://doi.org/10.1016/j.solener.2012.05.027
  11. S. J. Henley, J. D. Carey, and S. R. P. Silva, "Pulsed laser-induced nanoscale island formation in thin metal-on-oxide films," Phys. Rev. B 72, 195408 (2005). https://doi.org/10.1103/PhysRevB.72.195408
  12. J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, "Pulsed laser-induced dewetting in nanoscopic metal films: theory and experiments," Phys. Rev. B. 75, 235439 (2007). https://doi.org/10.1103/PhysRevB.75.235439
  13. Y. Oh and M. Lee, "Single-pulse transformation of Ag thin films into nanoparticles via laser-induced dewetting," Appl. Surf. Sci. 399, 555-564 (2017). https://doi.org/10.1016/j.apsusc.2016.12.027
  14. Y. Oh, J. Lee, and M. Lee, "Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films," Appl. Surf. Sci. 434, 1293-1299 (2018). https://doi.org/10.1016/j.apsusc.2017.11.245
  15. J. Lee and M. Lee, "Diffraction-grating-embedded dye-sensitized solar cells with good light harvesting," Adv. Energy. Mater. 4, 1300978 (2014). https://doi.org/10.1002/aenm.201300978
  16. L. Han, N. Koite, Y. Chiba, and T. Mitake, "Modeling of an equivalent circuit for dye-sensitized solar cells," Appl. Phys. Lett. 84, 2433 (2004). https://doi.org/10.1063/1.1690495
  17. H. Elbohy, M. R. Kim, A. Dubey, K. M. Reza, D. Ma, J. Zai, X. Qian, and Q. Qiao, "Incorporation of plasmonic Au nanostars into photoanodes for high efficiency dye-sensitized solar cells," J. Mater. Chem. A 4, 545-551 (2016). https://doi.org/10.1039/C5TA06425B
  18. D. N. Joshi, S. Mandal, R. Kothandraman, and R. A. Prasath, "Efficient light harvesting in dye sensitized solar cells using broadband surface plasmon resonance of silver nanoparticles with varied shapes and sizes," Mater. Lett. 193, 288-291 (2017). https://doi.org/10.1016/j.matlet.2017.02.008
  19. R. Krishnapriya, S. Praneetha, and A. V. Murugan, "Energy-efficient, microwave-assisted hydro/solvothermal synthesis of hierarchical flowers and rice grain-like ZnO nanocrystals as photoanodes for high performance dye-sensitized solar cells," CrystEngComm. 17, 8353-8367 (2015). https://doi.org/10.1039/C5CE01438G