References
- Abdelbari, S., Amar, L.H.H., Kaci, A. and Tounsi, A. (2018), "Single variable shear deformation model for bending analysis of thick beams", Struct. Eng. Mech., 67(3), 291-300. https://doi.org/10.12989/SEM.2018.67.3.291
- Ai, Z.H. and Ren, G.P. (2017), "Dynamic response of an infinite beam on a transversely isotropic multilayered half-space due to a moving load", Int. J. Mech. Sci., 133, 817-828. https://doi.org/10.1016/j.ijmecsci.2017.09.042
- Al-Balhawi, A. and Zhang, B. (2017), "Investigations of elastic vibration periods of reinforced concrete moment-resisting frame systems with various infill walls", Eng. Struct., 151, 173-187. https://doi.org/10.1016/j.engstruct.2017.08.016
- Attar, M., Karrech, A. and Regenauer-Lieb, K. (2017), "Dynamic response of cracked Timoshenko beams on elastic foundations under moving harmonic loads", J. Vibr. Contr., 23(3), 432-457. https://doi.org/10.1177/1077546315580470
- Banerjee, J.R. (1997), "Dynamic stiffness for structural elements: A general approach", Comput. Struct., 63(1), 101-103. https://doi.org/10.1016/S0045-7949(96)00326-4
- Banerjee, J.R. and Ananthapuvirajah, A. (2018), "Free vibration of functionally graded beams and frameworks using the dynamic stiffness method", J. Sound Vibr., 422, 34-47. https://doi.org/10.1016/j.jsv.2018.02.010
- Banerjee, J.R. and Jackson, D.R. (2013), "Free vibration of a rotating tapered Rayleigh beam: A dynamic stiffness method of solution", Comput. Struct., 124, 11-20. https://doi.org/10.1016/j.compstruc.2012.11.010
- Beiraghi, H. (2016), "Fundamental period of masonry infilled moment-resisting frame buildings", Struct. Des. Tall Spec., 26(5), 1-10.
- Bickford, W.B. (1982), "A consistent higher order beam theory", Develop. Theoret. Appl. Mech., 11, 137-150.
- Bozyigit, B. and Yesilce, Y. (2016), "Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam", Struct. Eng. Mech., 58(5), 847-868. https://doi.org/10.12989/sem.2016.58.5.847
- Bozyigit, B. and Yesilce, Y. (2018) "Investigation of natural frequencies of multi-bay and multi-storey frames using single a variable shear deformation theory", Struct. Eng. Mech., 65(1), 9-17. https://doi.org/10.12989/SEM.2018.65.1.009
- Chaker, A.A. and Cherifati, A. (1999), "Influence of masonary infill panels on the vibration and stiffness characteristics of R/C frame building", Earthq. Eng. Struct. Dyn., 28, 1061-1065. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<1061::AID-EQE856>3.0.CO;2-3
- Damanpack, A.R. and Khalili, S.M.R. (2012), "High-order free vibration analysis of sandwich beams with a flexible core using dynamic stiffness method", Compos. Struct., 94(5), 1503-1514. https://doi.org/10.1016/j.compstruct.2011.08.023
- Deng, H., Chen, K., Cheng, W. and Zhao, S. (2017), "Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternac elastic foundation", Compos. Struct., 160, 152-168. https://doi.org/10.1016/j.compstruct.2016.10.027
- Dilena, M. and Morassi, A. (2004), "The use of antiresonances for crack detection in beams", J. Sound Vibr., 276, 195-214. https://doi.org/10.1016/j.jsv.2003.07.021
- El-Dakhakhni W.W., Elgaaly, M. and Hamid, A.A. (2003), "Threestrut model for concrete masonary-infilled steel frames", J. Struct. Eng., 129(2), 177-185. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(177)
- Eurocode 6 (1996), Design of Masonry Structures-Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures, European Committee for Standardization, Brussels, Belgium.
- FEMA-356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, U.S.A.
- Ghandi, E. and Shiri, B. (2017), "On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method", Struct. Eng. Mech., 62(6), 759-769. https://doi.org/10.12989/SEM.2017.62.6.759
- Ghandi, E., Rafezy, B. and Howson, W.P. (2012), "On the biplanar motion of a Timoshenko beam with shear resistant infill", Int. J. Mech. Sci., 57(1), 1-8. https://doi.org/10.1016/j.ijmecsci.2011.12.011
- Ghugal, Y.M. and Shimpi, R.P. (2001), "A review of refined shear deformation theories for isotropic laminated beams", J. Reinf. Plast. Comp., 20(3), 255-272. https://doi.org/10.1177/073168401772678283
- Grossi, R.O. and Albarracin, C.M. (2013), "Variational approach to vibrations of frames with inclined members", Appl. Acoust., 74(3), 325-334. https://doi.org/10.1016/j.apacoust.2012.07.014
- Han, F., Dan, D. and Cheng, W. (2018), "An exact solution for dynamic analysis of a complex double-beam system", Compos. Struct., 193, 295-305. https://doi.org/10.1016/j.compstruct.2018.03.088
- Han, H., Cao, D. and Liu, L. (2017), "Green's functions for forced vibration analysis of bending-torsion coupled Timoshenko beam", Appl. Math. Model., 45, 621-635. https://doi.org/10.1016/j.apm.2017.01.014
- Han, S.M., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theories", J. Sound Vibr., 225(5), 936-988.
- Hanson, D, Waters, T.P., Thompson, D.J., Randall, R.B. and Ford, R.A.J. (2007), "The role of anti-resonance frequencies from operational modal analysis in finite element model updating", Mech. Syst. Sign. Pr., 21(1), 74-97. https://doi.org/10.1016/j.ymssp.2006.01.001
- Heyliger, P.R. and Reddy, J.N. (1988), "A higher order beam finite element for bending and vibration problems", J. Sound Vibr., 126(2), 309-326. https://doi.org/10.1016/0022-460X(88)90244-1
- Holmes, M. (1961), "Steel Frames with brick work and concrete infilling", Proceedings of the Institution of the Civil Engineers, 19(4), 473-478. https://doi.org/10.1680/iicep.1961.11305
- Holmes, M. (1963), "Combined loading on infilled frames", Proceeding of the Institution of Civil Engineers, 25(1), 31-38. https://doi.org/10.1680/iicep.1963.10685
- Howson, W.P. and Watson, A. (2017), "Exact eigensolution of a class of multi-level elastically connected members", Eng. Struct., 143, 375-383. https://doi.org/10.1016/j.engstruct.2017.03.059
- Jones, K. and Turcotte, J. (2002), "Finite element model updating using antiresonant frequencies", J. Sound Vibr., 252(4), 717-727. https://doi.org/10.1006/jsvi.2001.3697
- Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, S.R. (2017), "An original single variable shear deformation theory for buckling analysis of thick isotropic plates", Struct. Eng. Mech., 63(4), 439-446. https://doi.org/10.12989/SEM.2017.63.4.439
- Labib, A., Kennedy, D. and Featherstone, C. (2014), "Free vibration analysis of beams and frames with multiple cracks for damage detection", J. Sound Vibr., 333(20), 4991-5003. https://doi.org/10.1016/j.jsv.2014.05.015
- Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vibr., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4
- Li, H., Yin, X. and Wu, W. (2016), "Dynamic stiffness formulation for in-plane and bending vibrations of plates with two opposite edges simply supported", J. Vibr. Contr., 24(9), 1652-1669. https://doi.org/10.1177/1077546316667205
- Lien, N. and Yao, G.C. (2000), "Identification of anti-resonance frequency in buildings based on vibration measurements", Proceedings of the 12th World Conference on Earthquake Engineering, Auckland.
- Mainstone, R.J. (1974), Supplementary Note on the Stiffness and Strenght of Infilled Frames, Building Research Establishment, London, U.K.
- Mei, C. (2012), "Free vibration analysis of classical single-storey multi-bay planar frames", J. Vibr. Contr., 19(13), 2022-2035. https://doi.org/10.1177/1077546312455081
- Mei, C. (2018), "Analysis of in- and out-of plane vibrations in a rectangular frame based on two- and three dimensional structural models", J. Sound Vibr., 1-28.
- Mei, C. and Sha, H. (2015), "Analytical and experimental study of vibrations in simple spatial structures", J. Vibr. Contr., 22(17), 3711-3735. https://doi.org/10.1177/1077546314565807
- Miao, Y., Shi, Y., Luo, H. and Gao, R. (2018), "Closed-form solution considering the tangential effect under harmonic line load for an infinite Euler-Bernoulli beam on elastic foundation", Appl. Math. Model., 54, 21-33. https://doi.org/10.1016/j.apm.2017.09.040
- Naprstek, J. and Fischer, C. (2017), "Investigation of bar system modal characteristics using dynamic stiffness matrix polynomial approximations", Comput. Struct., 180, 3-12. https://doi.org/10.1016/j.compstruc.2016.10.015
- Ozturkoglu, O., Ucar, T. and Yesilce, Y. (2017), "Effect of masonary infill walls with openings on nonlinear response of reinforced concrete frames", Earthq. Struct., 12(3), 333-347. https://doi.org/10.12989/eas.2017.12.3.333
- Paz, M. and Leigh, W. (2004), Structural Dynamics-Theory and Computation, Kluwer Academic Publishers, U.S.A.
- Polyakov, S.V. (1950), Investigation of the Strength and of the Deformational Characteristics of Masonry Filler Walls and facing on Framed Structures, Construction Industry Institute 3.
- Rao, S.S. (1995), Mechanical Vibrations, Addison-Wesley Publishing Company, U.S.A.
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Rubio, L., Fernandez-Saez, J. and Morassi, A. (2015), "Identification of two cracks in a rod by minimal resonant and antiresonant frequency data", Mech. Syst. Sign. Pr., 60, 1-13.
- Salama, M.I. (2015), "Estimation of period of vibration for concrete moment-resisting frame buildings", Hous. Build. Nat. Res. Center, 11(1), 16-21.
- Shimpi, R.P, Patel, H.G. and Arya, H. (2007), "New first order shear deformation plate theories", J. Appl. Mech., 74(3), 523-533. https://doi.org/10.1115/1.2423036
- Shimpi, R.P, Shetty, R.A. and Guha, A. (2017), "A simple single variable shear deformation theory for a rectangular beam", J. Mech. Eng. Sci., 231(24), 4576-4591. https://doi.org/10.1177/0954406216670682
- Shimpi, R.P. (2002), "Refined plate theory and its variants", AIAA J., 40(1), 137-146. https://doi.org/10.2514/2.1622
- Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Comput. Struct., 147, 107-116. https://doi.org/10.1016/j.compstruc.2014.10.001
- Tamboli, H.R. and Karadi, U.N. (2012), "Seismic analysis of RC frame structure with and without masonary infill walls", Ind. J. Nat. Sci., 3(14), 1137-1194.
- Tan, G., Wang, W., Cheng, Y., Wei, H., Wei, Z. and Li, H. (2018), "Dynamic response of a nonuniform Timoshenko beam with elastic supports, subjected to a moving spring-mass system", Int. J. Struct. Stab. Dyn., 18(5), 1850066-1-1852266-23. https://doi.org/10.1142/S0219455418500669
- Thambiratnam, D. (2009), "Modelling and analysis of infilled frame structures under seismic loads", Open Constr. Build. Technol. J., 3, 119-126. https://doi.org/10.2174/1874836800903010119
- Thinh, T.I. and Nguyen, M.C. (2016), "Dynamic stiffness matrix of continuous element for vibration of thick cross-ply laminated composite cylindrical shells", Compos. Struct., 98, 93-102.
- Tounsi, D., Casimir, J.B., Abid, S., Tawfiq, I. and Haddar, M. (2014), "Dynamic stiffness formulation and response analysis of stiffened shells", Comput. Struct., 132, 75-83. https://doi.org/10.1016/j.compstruc.2013.11.003
- Zhang, C., Jin, G., Ye, T. and Zhang, Y. (2018), "Harmonic response analysis of coupled plate structures using the dynamic stiffness method", Thin Wall Struct., 127, 402-415. https://doi.org/10.1016/j.tws.2018.02.014
Cited by
- Coupled‐two‐beam discrete model for dynamic analysis of tall buildings with tuned mass dampers including soil–structure interaction vol.29, pp.1, 2018, https://doi.org/10.1002/tal.1683