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NEWTON SCHULZ METHOD FOR SOLVING NONLINEAR
MATRIX EQUATION Xp + A∗XA = Q

Hyun-Min Kim, Young-jin Kim, and Jie Meng

Abstract. The matrix equation Xp + A∗XA = Q has been studied to
find the positive definite solution in several researches. In this paper,
we consider fixed-point iteration and Newton’s method for finding the
matrix p-th root. From these two considerations, we will use the Newton-
Schulz algorithm (N.S.A). We will show the residual relation and the local
convergence of the fixed-point iteration. The local convergence guarantees
the convergence of N.S.A. We also show numerical experiments and easily
check that the N.S. algorithm reduce the CPU-time significantly.

1. Introduction

In this paper, we will consider the matrix equation
Xp +A∗XA = Q,(1.1)

where p is a positive integer, A,Q ∈ Cn×n and Q is a Hermitian positive definite
matrix.

The existence of Hermitian positive definite solutions of the equation (1.1)
has been investigated in some cases. Put Y = Xp, then equation (1.1) is
equivalent to Y +A∗Y

1
P A = Q, which is a special example of equation

X +A∗F (X)A = Q.(1.2)
Ran and Reurings [15] proved that under the assumption the function F (·)
is monotone and Q − A∗F (Q)A is positive definite, the positive semi-definite
solutions of equation (1.2) exist. EL-Sayed and Ran [3] proved that if F
maps positive definite matrices either into positive definite matrices or into
negative definite matrices, and satisfies some monotonicity property, then under
some conditions an iteration method converges to a positive definite solution
of equation (1.1). See also [16] for the linear matrix equation when p = 1.

Jia and Wei [10] studied the matrix equation Xs + ATXtA = Q which is
also equivalent to equation(1.1) if we put Y = Xt and p = s/t, where s and
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t are both nonnegative integers, A and Q are n × n real matrices and Q is
symmetric positive definite. They proved that the equation has a symmetric
positive definite solution if λmax(ATA) ≤ λmin(Q)(λmax(Q))− t

s . When Q = I
and A is invertible, one can see the approach outlined in [4, 17–19]. They
considered the matrix p-th root for the way to find the solution.

In [13], Meng and Kim considered the following basic fixed-point iteration by
using the matrix p-th root for finding the Hermitian positive definite solution
of the equation (1.1):

(1.3) Xk+1 = (Q−A∗XkA)
1
p , X0 = I.

The method (1.3) for finding the matrix p-th root is arbitrary, so we used
Built-in function in MATLAB R2014a.

Many researchers have developed methods for finding the following p-th root
of a matrix A.

Xp = A.

We call X as the principal p-th root of A when the eigenvalues of X lie in the
segment {z ∈ C−{0} : −π/p < arg(z) < π/p}. One of the applications of p-th
root is in the computation of the matrix logarithm through the relation [2,11]

logA = plogA
1
p ,

where p is chosen so that A
1
p can be well approximated by a polynomial or

rational function. Hoskins and Walton [7] consider the iteration

Xk+1 = 1
p

(
(p− 1)Xk +AXk

1−p
)
, X0 = A,

which is Newton’s method for Xp−A = 0 simplified by using the commutativity
relation XkA = AXk. They focused on symmetric positive definite matrices
that Xk defined by the above iteration converges to p-th root of A. However, for
more general A, the iteration does not generally converge to A

1
p , as explained

by Smith [20].
When we find p-th root of a matrix, the Newton sequence is defined as

following:

(1.4) Xk+1 = 1
p

(
(p− 1)Xk +AXk

1−p
)
, X0 = I.

We can also find the solution of the p-th root at every step in (1.3) by using
the above Newton’s method.

The Newton’s method has several versions and modifications. In [8, 9],
Iannazzo suggest stable versions of Newton’s method. The inverse Newton’s
method suggested in [1, 6, 21]. The Schur Newton method was proposed by
Smith [20] and it was developed by Guo and Higham [6]. Halley’s method was
suggested in [9], and Guo has explained the residual relation for the Newton’s
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method and Halley’s method in [5]. In that paper, Guo also showed the exis-
tence of the p-th root of M -matrices and H-matrices. The residual is defined
by R(X) = I −AX−p through R(X) = A−Xp in [6].

In this paper, we will show a way of finding the solution of (1.1). This algo-
rithm is motivated by the Newton’s method for the matrix p-th root. Consider
the following algorithm (1.5) to find the p-th root. We will set Xk and Bk as
shown below and we will show the residual relation, local convergence of the
fixed point iteration (1.3) and numerical experiment in later sections.

(1.5) Xk+1 = 1
p

(
(p− 1)Xk +BkX

1−p
k

)
where Bk = Q−A∗XkA,X0 = I.

2. Residual relation for Newton Schulz algorithm

In this section, we consider the Newton’s method and show the residual
relation for the convergence. We also assume following conditions.{

1. AQ = QA,

2. ρ(I −Q+A∗A) ≤ 1.

We also consider the residual of the p-th root of a matrix A as following
form:

R(X) = I −AX−p.(2.1)
Guo showed the residual relation for the following Newton’s method to find

the matrix p-th root of A in [5]. So we will consider the next remark to prove
the N. S. algorithm.

Remark 2.1. Assume that ρ(I−A) ≤ 1, where ρ(·) denotes the spectral radius.
Then the Newton sequence is well defined by (1.4) and

R(Yk+1) =
∞∑

i=2
ci(R(Yk))i,

where ci > 0 for i ≥ 2 and
∑∞

i=2 ci = 1. Moreover, if ‖R(Y0)‖ = ‖I − A‖ ≤ 1
for a sub-multiplicative matrix norm ‖·‖, then for each k ≥ 0

‖R(Yk+1)‖ ≤ ‖(R(Y0))2k

‖ ≤ ‖R(Y0)‖2k

.(2.2)

From the above remark, we can show the residual relation for (1.3) at every
step. We let Yk,i be the Newton sequence for finding the matrix p-th root of
Bk with the starting value Yk,0 = Xk.

Yk,i+1 = 1
p

(
(p− 1)Yk,i +BkYk,i

1−p
)
, Yk,0 = Xk.(2.3)

Then Xk+1 in (1.5) is the first element of the Newton sequence Yk,i, i.e., Xk+1 =
Yk,1.

We define the residual for finding the matrix p-th root of Bk as following:
Rk(X) = I −BkX

−p.(2.4)
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At first, we show the commutativity.

Lemma 2.2. If we set X0 = I, then XiXj = XjXi,∀k = 0, 1, . . ..

Proof. Since X0 = I and AQ = QA, we have

(Q−A∗XkA)Xk = Xk(Q−A∗XkA),

which implies that

Xk+1Xk = 1
p

(
(p− 1)Xk + (Q−A∗XkA)X1−p

k

)
Xk = XkXk+1.

�

Next, we will show the residual relation to prove the convergence of the
sequence {Xk}.

Theorem 2.3. Consider the matrix equation (1.1) and if AQ = QA, ρ(I −
Q + A∗A) ≤ 1 and ρ(Q) ≥ ρ(A∗A), then the iteration (2.3) satisfies following
residual relation:

‖Rk(Yk,1)‖ ≤ ‖Rk(Yk,0)‖2 ≤ ‖Rk−1(Yk−1,1)‖2

≤ ‖Rk−1(Yk−1,0)‖2·2 ≤ · · · ≤ ‖R0(Y0,0)‖2k

,

which means that

‖Rk(Xk)‖ ≤ ‖Rk−1(Xk−1)‖2 ≤ · · · ≤ ‖R0(X0)‖2k

.

Proof. Y0,0 = X0 = I is nonsingular and ρ(X0) ≤ 1. Since,

Yk+1,0 = Yk,1 = Xk+1 = 1
p

(
(p− 1)Xk +BkXk

1−p
)

= Xk

(
I − 1

p
I + 1

p
BkXk

−p
)

= Xk

(
I − 1

p
(I −BkXk

−p)
)

= Xk

(
I − 1

p
Rk(Xk)

)
.

If Yk,0 = Xk is nonsingular and ρ(Xk) ≤ 1, then Xk+1 is also nonsingular and
ρ(Xk+1) ≤ ρ(Xk) when ρ(Rk(Xk)) ≤ 1.

If k = 0, then B0 = Q − A∗A and ρ(I − B0) = ρ(R0(X0)) = ρ(I − Q +
A∗A) ≤ 1 from the assumption. Thus, the Newton sequence {Y0,i} is well-
defined, Y0,1(= X1 = Y1,0) is nonsingular and ρ(Y0,1)(= ρ(X1) = ρ(Y1,0)) ≤ 1.
Since the relation ‖Rk(Yk,1)‖ ≤ ‖Rk(Yk,0)‖2 is obvious from Remark 2.1 where
ρ(I −Bk) ≤ 1, so ‖R0(Y0,1)‖ ≤ ‖R0(Y0,0)‖2.

We will prove that

‖Rk+1(Yk+1,0)‖ = ‖Rk+1(Xk+1)‖ ≤ ‖Rk(Xk+1)‖ = ‖Rk(Yk,1)‖, ∀ k = 0, 1, . . . ,

where ρ(Rk(Xk)) ≤ 1.
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Since

ρ(A∗Xk+1A) = ρ(A∗Xk(I − 1
p
Rk(Xk))A) ≤ ρ(A∗XkA) ≤ ρ(A∗A),

then

ρ(Rk+1(Yk+1,0)) = ρ(I −QX−p
k+1 +A∗Xk+1AX

−p
k+1)

= ρ(I +A∗Xk(I − 1
p
Rk(Xk))AX−p

k+1 −QX
−p
k+1)

≤ ρ(I +A∗XkAX
−p
k+1 −QX

−p
k+1)

= ρ(Rk(Yk,1)).

Thus, ‖Rk+1(Yk+1,0)‖ ≤ ‖Rk(Yk,1)‖.
If ρ(I −Bk) ≤ 1, then

ρ(I −Bk+1) = ρ(I − (Q−A∗Xk+1A))
= ρ(I −Q+A∗Xk+1A)

= ρ(I −Q+A∗Xk(I − 1
p
Rk(Xk))A)

≤ ρ(I −Q+A∗XkA)
= ρ(I −Bk).

Thus, ‖Rk(Yk,1)‖ ≤ ‖Rk(Yk,0)‖2 ≤ ‖Rk−1(Yk−1,1)‖2 ≤ · · · ≤ ‖R0(Y0,0)‖2k

.
�

3. Local convergence

In this section, we show the local convergence for the iteration (1.3). The
local convergence will guarantee the convergence for (1.5). So we consider the
matrix function

F (X) = (Q−A∗XA)
1
p ,

where p is a positive integer, A,Q ∈ Cn×n and Q is a Hermitian positive definite
matrix.

One-step stationary iterations have the form

(3.1) Xk+1 = F (Xk), k = 0, 1, 2, . . . ,

where F : D ⊂ Rm×m → Rm×m.

Definition 3.1. A matrix function F : D ⊂ Rm×m → Rm×m is contractive on
a set D0 ⊂ D if there is an α < 1 such that ‖F (X)− F (Y )‖ ≤ α‖X − Y ‖ for
all X,Y ∈ D0.

Theorem 3.2 (Contraction Mapping Theorem: version 1). Let F : D ⊂
Rm×m → Rm×m, and suppose that F maps a closed set D0 ⊂ D into itself and
is contractive. Then, F has the unique fixed point in D0.
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Theorem 3.3 (Local Convergence Theorem, [14]). Let F : D ⊂ Rm×m →
Rm×m, and suppose that there exist a ball B := B(S, δ) ⊂ D and a constant
α < 1 such that

‖F (X)− S‖ ≤ α‖X − S‖ for all X ∈ B.
Then, for any X0 ∈ B, the iteration from (3.1) remains in B and converges to
S and

lim sup
k→∞

k
√
‖Xk − S‖ ≤ α.

In Theorem 3.3, since X0 is arbitrary, F is invariant on B (i.e., F maps into
itself).

From the above theorems, we have the following theorem.

Theorem 3.4 ([12]). Let S ∈ Rm×m be a fixed point of F : D ⊂ Rm×m →
Rm×m and suppose that there exist balls B1 := B(S, δ) ⊂ D and B2 := B (S, δ′)
⊂ B1 such that

‖F (X)− F (Y )‖ ≤ Γ(X,Y ) · ‖X − Y ‖, ∀ X,Y ∈ D,
Γ(X,S) ≤ µ̄(‖X − S‖) < µ̄(δ) ≤ 1, ∀ X∈ B1,

Γ(X,Y ) ≤ ν̄(δ′, δ′) < 1, ∀ Y,Z ∈ B2,

and
µ̄(0) = lim

x→0
µ̄(x) = µ < 1,

where Γ(X,Y ), µ̄ and ν̄ are real nonnegative valued functions on D×D, [0, δ]
and [0, δ′] × [0, δ′] respectively, and µ̄ is increasing on [0, δ]. Then, for any
X0 ∈ B1, the sequence {Xk} generated by (3.1) converges to S. Moreover, S is
the unique fixed point of F in B2 and

lim sup
k→∞

k
√
‖Xk − S‖ ≤ α.

Notation. For given matrices A ∈ Rm×n and B ∈ Rr×q, the Kronecker
product A⊗B is an mr × nq matrix.

A⊗B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 .
The operator vec(A) represents a column vector from a matrix A:

vec(A) = [aT
1 a

T
2 . . . a

T
n ]T ∈ Rmn×1,

where ai is the i-th column of A and aT
i is the transpose of ai.

Remark 3.5. The matrix equation
AXB = C

is equivalent to the system of q ×m equations in n× p unknowns given by
(BT ⊗A)vec(X) = vec(C)
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that is, vec(AXB) = (BT ⊗A)vec(X).

Suppose A is nonsingular, let M = Q−A∗XA and N = Q−A∗Y A, then

F (X)− F (Y ) = M
1
p −N

1
p ,

and

X − Y = (A∗)−1(N −M)A−1

=
p−1∑
i=0

(A∗)−1N
p−1−i

p (N
1
p −M

1
p )M

i
pA−1.

Thus

vec(X − Y ) = (AT ⊗A∗)−1
( p−1∑

i=0
(M

i
p )T ⊗N

p−1−i
p

)
vec(F (Y )− F (X)),

which implies that

vec
(
F (Y )− F (X)

)
=
( p−1∑

i=0
(M

i
p )T ⊗N

p−1−i
p

)−1
(AT ⊗A∗)vec(X − Y ).

So we can get

‖F (Y )− F (X)‖F ≤
∥∥∥(

p−1∑
i=0

(M
i
p )T ⊗N

p−1−i
p )−1

∥∥∥
2
‖A‖2

2‖X − Y ‖F .(3.2)

Now we define Γ(X,Y ) by

Γ(X,Y ) =
∥∥∥( p−1∑

i=0
(M

i
p )T ⊗N

p−1−i
p

)−1∥∥∥
2
‖A‖2

2.

Theorem 3.6. Let S be a solvent of (1.1), and let a = ‖A‖2, s = σmin(S). If
sp −

(
a2

p

) p
p−1 > 0, then

Γ(X,Y ) ≤ ν̄(δ′, δ′) < 1, ∀X,Y ∈ B2 := B (S, δ′) ,

where

δ′ <
sp −

(
a2

p

) p
p−1

a2

and

ν̄(‖X − S‖2, ‖Y − S‖2) = a2∑p−1
i=0

(
sp − ‖X − S‖2a2

) i
p
(
sp − ‖Y − S‖2a2

) p−1−i
p

.

Proof. Let X,Y ∈ B2, then we have

Γ(X,Y ) =
∥∥∥( p−1∑

i=0

(
(Q−A∗XA)

i
p

)T

⊗ (Q−A∗Y A)
p−1−i

p

)−1∥∥∥
2
‖A‖2

2
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=
∥∥∥( p−1∑

i=0

(
(Q−A∗(X − S)A−A∗SA)

i
p

)T

⊗
(
Q−A∗(Y − S)A−A∗SA

) p−1−i
p
)−1∥∥∥

2
‖A‖2

2

=
∥∥∥( p−1∑

i=0

(
(Sp −A∗(X − S)A)

i
p

)T

⊗
(
Sp −A∗(Y − S)A

) p−1−i
p
)−1∥∥∥

2
‖A‖2

2

≤ a2∑p−1
i=0

(
(sp − σmax(A∗(X − S)A))

i
p (sp − σmax(A∗(Y − S)A))

p−1−i
p
)

≤ a2∑p−1
i=0

(
(sp − ‖X − S‖2‖a2)

i
p (sp − ‖Y − S‖2‖a2)

p−1−i
p
) .

From this, we get

Γ(X,Y ) ≤ ν̄(‖X − S‖2, ‖Y − S‖2),

and

ν̄(‖X − S‖2, ‖Y − S‖2) ≤ ν̄(δ′, δ′) = a2

p
(
sp − a2δ′

) p−1
p

,

where δ′ = min{‖X − S‖2, ‖Y − S‖2}.

Since sp −
(

a2

p

) p
p−1 > 0 and δ′ <

sp−
(

a2
p

) p
p−1

a2 , then

(a2

p

) p
p−1

< sp − a2δ′,

which implies

a2

p
<
(
sp − a2δ′

) p−1
p .

Thus

ν̄(δ′, δ′) = a2

p
(
sp − a2δ′

) p−1
p

< 1.
�

4. Numerical experiments

In this section, we give two numerical experiments in [13] to show the ef-
ficiency of the iterations for finding the positive definite solution of equation
(1.1). We also give two experiments to find the convergence radius of local
convergence. Our experiments were done in Matlab R2017b and each time
for the iteration is the average of 20 times.

Example 4.1 ([13]). Let matrix A = rand(10) × 10−2, Q = eye(10) and
p = 2, 3, . . . , 10.
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N.S.

Figure 4.1. Time in Example 4.1

B.I.-iter B.I.-time (1.0e-03*) N.S.-iter N.S.-time(1.0e-03*)
p = 2 4 0.7020 4 0.4733
p = 3 4 0.7118 4 0.4953
p = 4 4 0.6145 4 0.3489
p = 5 4 0.6161 4 0.3568
p = 6 4 0.6437 4 0.3811
p = 7 4 0.6042 4 0.3449
p = 8 4 0.5896 4 0.3471
p = 9 3 0.4461 4 0.3471
p = 10 3 0.4601 4 0.3553

Example 4.2 ([13]). Let matrix A = rand(50) × 10−2, Q = eye(50) and
p = 2, 3, . . . , 10.

B.I.-iter B.I.-time N.S.-iter N.S.-time
p = 2 8 0.0177 8 0.0050
p = 3 8 0.0173 6 0.0039
p = 4 7 0.0146 7 0.0046
p = 5 7 0.0147 7 0.0048
p = 6 7 0.0149 7 0.0051
p = 7 6 0.0128 7 0.0051
p = 8 6 0.0128 7 0.0053
p = 9 6 0.0133 7 0.0054
p = 10 6 0.0132 6 0.0046
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Figure 4.2. Time in Example 4.2

In Section 3, we showed the local convergence of the method (1.3). Now,
we will calculate the convergence radius of the following examples. We used
matrix 2-norm for calculation.

Example 4.3. Let A =
( 0.5 −0.45

0.45 0
)
, Q = ( 1 0

0 1 ), p = 2, 3, 4, 5, 6.
s a δ

p = 2 0.6902 0.7648 0.6682
p = 3 0.7713 0.7648 0.6372
p = 4 0.8186 0.7648 0.6361
p = 5 0.8497 0.7648 0.6403
p = 6 0.8717 1.0215 0.6453

Example 4.4. Let A = ( 0.2 0.4
0.05 0.25 ) , Q = ( 1 0

0 1 ), p = 2, 3, 4, 5, 6.
s a δ

p = 2 0.8716 0.5114 2.8393
p = 3 0.9099 0.5114 2.7818
p = 4 0.9306 0.5114 2.7663
p = 5 0.9435 0.5114 2.7632
p = 6 0.9524 0.5114 2.7641

The iteration number of N.S. algorithm is equal to or greater than Built-in
function in MATLAB when we compare only the iteration numbers. We don’t
check the iteration number of Built-in function when we use it to find the p-th
root. We reduce CPU-time for finding the p-th root at each steps. By the N. S.
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algorithm, we save the CPU time to find the solution. We can consider other
methods which evaluate the matrix p-th root. Some other methods also reduce
the CPU-time. For example, we also checked the Halley method in [5] and it
also reduces CPU-time, but it is slower than N. S. algorithm. It is possible to
find suitable algorithms for solving the equation (1.1) in various conditions of
coefficient matrices.
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