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GORENSTEIN WEAK INJECTIVE MODULES WITH

RESPECT TO A SEMIDUALIZING BIMODULE

Zenghui Gao, Xin Ma, and Tiwei Zhao

Abstract. In this paper, we introduce the notion of C-Gorenstein weak

injective modules with respect to a semidualizing bimodule SCR, where
R and S are arbitrary associative rings. We show that an iteration of the

procedure used to define GC -weak injective modules yields exactly the

GC -weak injective modules, and then give the Foxby equivalence in this
setting analogous to that of C-Gorenstein injective modules over commu-

tative Noetherian rings. Finally, some applications are given, including
weak co-Auslander-Buchweitz context, model structure and dual pair in-

duced by GC -weak injective modules.

1. Introduction

Auslander and Bridger introduced [1] the G-dimension for finitely generated
modules over Noetherian rings. In [3], Enochs and Jenda introduced Goren-
stein projective modules for arbitrary modules over a general ring, which is a
generalization of finitely generated modules of G-dimension 0. As a dual of
Gorenstein projective modules, Gorenstein injective modules were also intro-
duced in [3]. Furthermore, Enochs, Jenda and Torrecillas in [5] introduced the
notion of Gorenstein flat modules. It is well known that Gorenstein projective,
injective and flat modules share many nice properties analogous to projective,
injective and flat modules, respectively, and the homological properties of some
generalized versions of these modules have been studied by many authors (e.g.
[9, 18, 23–25]). In particular, Holm and Jørgensen in [13] introduced the no-
tions of C-Gorenstein projective, C-Gorenstein injective and C-Gorenstein flat
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modules (GC-projective, GC-injective and GC-flat respectively for short) with
respect to a semidualizing module C over a commutative Noetherian ring R.

In [21], Sather-Wagstaff et al. further studied the properties of the category
of GC-flat modules, where C is a semidualizing module over a commutative
Noetherian ring R. They showed that the category of all GC-flat modules is
part of a weak AB-context in the terminology of Hashimoto. Also in [21],
they proved the stability of the category of GC-flat modules. Let S and R
be rings and SCR a semidualizing bimodule. Inspired by [21], Hu and Zhang
in [17] introduced and studied GC-FP-injective left R-modules. It was proven
that the GC-FP-injective left R-modules have nice properties when S is a left
coherent ring and SCR a faithfully semidualizing bimodule, and the category
of GC-FP-injective left R-modules is part of a weak AB-context, which is dual
of weak AB-context in the terminology of Hashimoto.

More recently, Bravo, Gillespie and Hovey in [2] described how Gorenstein
homological algebra should work for general rings, and they introduced the no-
tions of FP∞-injective (or absolutely clean) and level modules. Independently,
in [6, 7], the FP∞-injective and level modules were also called weak injective
and weak flat modules respectively. Along the same lines, it seems natural to
investigate certain generalization of the GC-(FP-)injective modules in a general
setting. The purpose of this paper is to study the homological theory of GC-
weak injective modules with respect to a semidualizing bimodule SCR, where
R and S are arbitrary associative rings, and to show that many parts of the ho-
mological theory on the GC-(FP-)injective modules can be generalized directly
to the similar theory on GC-weak injective modules. The paper is organized
as follows.

In Section 2, we give some terminology and some preliminary results.
In Section 3, we introduce and study GC-weak injective modules with re-

spect to a semidualizing bimodule SCR, where R and S are arbitrary associative
rings. It is proven that the class of GC-weak injective modules is closed under
extensions, cokernels of monomorphisms, direct summands and direct prod-
ucts. We also show that an iteration of the procedure used to define GC-weak
injective modules yields exactly the GC-weak injective modules.

Theorem 1. The following are equivalent for a left R-module M :

(1) M is GC-weak injective;
(2) There is a HomR(HC(W(R)),−)-exact exact sequence

G = · · · // G1
// G0

// G−1 // G−2 // · · ·

with each Gi ∈ GCWI(R) such that M ∼= Ker(G−1 → G−2);
(3) There is a HomR(GCWI(R),−)-exact exact sequence

G = · · · // G1
// G0

// G−1 // G−2 // · · ·

with each Gi ∈ GCWI(R) such that M ∼= Ker(G−1 → G−2).
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In Section 4, we mainly discuss the Foxby equivalence in this setting. Es-
pecially, we prove that the subcategory of GC-weak injective left R-modules in
the Auslander class AC(R) and that of G-weak injective left S-modules in the
Bass class BC(S) are equivalent under Foxby equivalence.

Theorem 2. There are equivalences of categories

HC(W(R))
C⊗R− //

� _

��

H(W(S))
HomS(C,−)

∼oo � _

��
WIC(R)

C⊗R− //
� _

��

WI(S)
HomS(C,−)

∼oo � _

��
GCWI(R) ∩ AC(R)

C⊗R− //
� _

��

GWI(S) ∩ BC(S)
HomS(C,−)

∼oo � _

��
AC(R)

C⊗R− // BC(S).
HomS(C,−)

∼oo

In Section 5, we give some applications of GC-weak injective modules. Af-
ter introducing the notion of co-Auslander-Buchweitz context dual to that
of Auslander-Buchweitz context in [11, p. 34], we prove that every module

in ̂GCWI(R) admits a special ̂HC(W(R))-precover and a special GCWI(R)-
preenvelope, and that the triple(

GCWI(R), ̂HC(W(R)),HC(W(R))
)

satisfies the weak co-Auslander-Buchweitz context. In addition, we give a new
model structure in the category of left R-modules and a dual pair induced by
GC-weak injective modules.

2. Preliminaries

In this section, we give some terminology and some preliminary results
needed in the sequel. For more details the reader can consult [4, 7, 10,13,15].

2.1. Throughout this paper, R and S are fixed associative rings with identity
elements, and all modules are unitary. We use ModR or ModS to stand for
the class of left R- or S-modules. Right R- or S-modules are identified with
left modules over the opposite rings Rop or Sop. The notation SMR is used to
indicate that M is an (S,R)-bimodule, and the structures are compatible in
the sense that s(mr) = (sm)r for all s ∈ S, r ∈ R,m ∈ M . For an R-module
M , M+ = HomZ(M,Q/Z).

2.2. Let X be a subcategory of ModR. Denote by

⊥X = {M | ExtiR(M,X) = 0 for all X ∈ X and all i ≥ 1}.
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In particular, we denote by ⊥1X = {M | Ext1R(M,X) = 0 for all X ∈ X}.
The notations X⊥ and X⊥1 can be defined dually. Also, if X and Y are
subcategories of ModR, we write X ⊥ Y if ExtiR(X,Y ) = 0 for all X ∈ X ,
Y ∈ Y and all i ≥ 1.

Let M be a left R-module. An X -coresolution of M is an exact sequence

X = 0→M → X0 → X1 → X2 → · · ·

in ModR with each Xi ∈ X . The X -injective dimension of M is defined as

X - id(M) = inf{sup{n ≥ 0 | Xn 6= 0} | X is an X -coresolution of M}.

Dually, the X -resolution and X -projective dimension of M are defined.
Let H ⊆ X be subcategories of ModR. We say that H is a generator for X

provided that for each X ∈ X there is an exact sequence 0→ Ω→ H → X → 0
with H ∈ H and Ω ∈ X ; and moreover, H is a projective generator for X
provided that H is a generator for X and H ⊥ X .

2.3. An (S,R)-bimodule C = SCR is semidualizing if

(a1) SC admits a degreewise finite S-projective resolution.
(a2) CR admits a degreewise finite Rop-projective resolution.

(b1) The homothety map SSS
Sγ−→ HomRop(C,C) is an isomorphism.

(b2) The homothety map RRR
γR−→ HomS(C,C) is an isomorphism.

(c1) ExtiS(C,C) = 0 for all i ≥ 1.
(c2) ExtiRop(C,C) = 0 for all i ≥ 1.

A semidualizing bimodule SCR is faithfully semidualizing if it satisfies the
following conditions for all modules SN and MR:

(1) If HomS(C,N) = 0, then N = 0.
(2) If HomRop(C,M) = 0, then M = 0.

We always assume that SCR is a faithfully semidualizing bimodule in this
sequel.

2.4. The Auslander class AC(R) with respect to C consists of all modules
M in ModR satisfying:

(A1) TorRi (C,M) = 0 for all i ≥ 1.
(A2) ExtiS(C,C ⊗RM) = 0 for all i ≥ 1.
(A3) The natural evaluation homomorphism µ

M
: M −→ HomS(C,C⊗RM)

is an isomorphism (of R-modules).

The Bass class BC(S) with respect to C consists of all modules N ∈ ModS
satisfying:

(B1) ExtiS(C,N) = 0 for all i ≥ 1.

(B2) TorRi (C,HomS(C,N)) = 0 for all i ≥ 1.
(B3) The natural evaluation homomorphism ν

N
: C ⊗R HomS(C,N) −→ N

is an isomorphism (of S-modules).



GORENSTEIN WEAK INJECTIVE MODULES 1393

There are equivalences of categories ([15, Proposition 4.1]):

AC(R)
C⊗R− // BC(S).

HomS(C,−)
∼oo

2.5. Recall that a left R-module F is called super finitely presented [7] if
it admits a degreewise finite R-projective resolution, and a left R-module M
(resp. right R-module N) is called weak injective (resp. weak flat) if Ext1R(F,M)

= 0 (resp. TorR1 (N,F ) = 0) for all super finitely presented left R-modules F .
Moreover, we will say a left R-module M is weak projective if Ext1R(M,Q) = 0
for all weak injective left R-modules Q. Denote by WI(R) and WP(R) the
full subcategories of ModR consisting of weak injective modules and weak
projective modules respectively. One can easily verify thatWP(R) = ⊥WI(R)
by definition and basic homological methods.

From [4, Definition 7.1.2], it follows that (WP(R),WI(R)) is a cotorsion
theory which is cogenerated by the representative set of all super finitely pre-
sented left R-modules. So, by [4, Theorem 7.4.1 and Definition 7.1.5], every
left R-module M has a special WI(R)-preenvelope, that is, there is an exact
sequence 0 → M → W → L → 0 with W weak injective and L weak projec-
tive. Meanwhile, every left R-module M has a special WP(R)-precover, that
is, there is an exact sequence 0 → K → Q → M → 0 with Q weak projective
and K weak injective.

2.6. A module in ModR is called C-weak injective [8] if it has the form
HomS(C, I) for some I ∈ WI(S). We denote all C-weak injective modules in
ModR by WIC(R). It has been shown in [8, Proposition 3.1] that there are
equivalences of categories

WIC(R)
C⊗R− // WI(S).

HomS(C,−)
∼oo

We denote the kernel of (WP(R),WI(R)) by H(W(R)) :=WI(R) ∩WP(R).
Then this class of modules is not trivial. Indeed, we can take a nonzero weak
injective R-module M , then there is an exact sequence 0→ K → Q→M → 0
with Q weak projective and K weak injective. Since WI(R) is closed un-
der extensions by [6, Proposition 2.6(1)], we have Q is also weak injective.
Therefore Q belongs to H(W(R)). We call the elements of H(W(R)) weak
injective-projective R-modules. Also we will say a module in ModR is C-weak
injective-projective if it has the form HomS(C, I) for some I ∈ H(W(S)).

In what follows, we use HC(W(R)) to denote the subcategory of C-weak
injective-projective left R-modules. Moreover, let WPC(R) = ⊥WIC(R), and
the modules in WPC(R) are called C-weak projective.

2.7. Let R be a commutative ring, and C a semidualizing module.
1. A module M ∈ ModR is called C-Gorenstein injective (GC-injective for

short) [13] if
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(1) ExtiR(HomR(C, I),M) = 0 for all injective R-modules I and all i ≥ 1;
(2) There exist injective R-modules I0, I1, . . . together with an exact se-

quence

· · · → HomR(C, I1)→ HomR(C, I0)→M → 0

such that it stays exact after applying the functor HomR(HomR(C, J),
−) for each injective R-module J .

2. A module M ∈ ModR is called C-Gorenstein flat (GC-flat for short) [13]
if

(1) TorRi (HomR(C, I),M) = 0 for all injective R-modules I and all i ≥ 1;
(2) There exist flat R-modules F 0, F 1, . . . together with an exact sequence

0→M → C ⊗R F 0 → C ⊗R F 1 → · · ·
such that it stays exact after applying the functor HomR(C, I) ⊗R −
for each injective R-module I.

2.8. Let SCR be a semidualizing bimodule. A complete FICI-resolution is
a complex Y of left R-modules satisfying the following:

(1) Y is exact and HomR(FIfpC (R),−)-exact, and
(2) Yi is C-FP-injective when i ≥ 0 and Yi is injective when i < 0,

where FIfpC (R) is the subcategory of left R-modules HomS(C,E) with E ∈
⊥1FI(S) ∩ FI(S).

A module M ∈ ModR is called GC-FP-injective [17] if there exists a com-
plete FICI-resolution Y such that M ∼= Ker(I0 → I1). In this case, Y is
called a complete FICI-resolution of M . Denote by GCFI(R) the class of
GC-FP-injective left R-modules.

3. GC-weak injective modules

In this section, we give a treatment of GC-weak injective modules. It is
shown that the GC-weak injective modules share many nice properties of GC-
(FP-)injective modules in [13,17].

We start with the following:

Lemma 3.1. The following are equivalent for a left R-module M :

(1) M ∈ WPC(R).

(2) C ⊗RM ∈ WP(S) and TorRi (C,M) = 0 for any i ≥ 1.

In particular, if M ∈ AC(R), then M ∈ WPC(R)⇐⇒ C ⊗RM ∈ WP(S).

Proof. (1)⇒ (2). LetM ∈ WPC(R). Firstly, suppose E is a faithfully injective
left S-module, then HomS(C,E) ∈ WIC(R). So ExtiR(M,HomS(C,E)) = 0
for any i ≥ 1 by definition. Moreover, from the isomorphism ([4, Theorem
3.2.1]):

ExtiR(M,HomS(C,E)) ∼= HomS(TorRi (C,M), E) for any i ≥ 1,
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it follows that TorRi (C,M) = 0 for any i ≥ 1.
Let N ∈ WI(S). Then N ∈ BC(S) by [8, Theorem 2.2], and so N ∼=

C⊗RHomS(C,N) by definition, and HomS(C,N) ∈ AC(R) by [15, Proposition
4.1]. Hence, by [15, Theorem 6.4(a)], we have

Ext1S(C ⊗RM,N) ∼= Ext1S(C ⊗RM,C ⊗R HomS(C,N))

∼= Ext1R(M,HomS(C,N)).

Note that HomS(C,N) ∈ WIC(R), we have Ext1S(C ⊗R M,N) = 0, and so
C ⊗RM ∈ WP(S).

(2)⇒ (1). Assume that C⊗RM ∈ WP(S) and TorRi (C,M) = 0 for any i ≥
1. For any C-weak injective left R-module N , we have C⊗RN is weak injective
over S by [8, Proposition 3.1]. It follows from the factWP(S) = ⊥WI(S) that
ExtiR(M,N) ∼= ExtiS(C ⊗R M,C ⊗R N) = 0 for any i ≥ 1. Therefore, M is
C-weak projective, as desired. �

Proposition 3.2. The following are equivalent for a left R-module M :

(1) M ∈ HC(W(R));
(2) M ∈ WIC(R) ∩WPC(R);
(3) C ⊗RM ∈ H(W(S)).

Proof. (1) ⇒ (3). Let M ∈ HC(W(R)). Then there exists a module W ∈
H(W(S)) such that M = HomS(C,W ). Since W is weak injective, we have
that W ∈ BC(S) by [8, Theorem 2.2]. In particular, W ∼= C ⊗R HomS(C,W ).
Consequently, C⊗RM ∼= C⊗RHomS(C,W ) ∼= W . Thus C⊗RM ∈ H(W(S)).

(3) ⇒ (2). Assume that C ⊗R M ∈ H(W(S)). Then C ⊗R M ∈ BC(S) by

[8, Theorem 2.2]. So M ∈ AC(R) by [8, Lemma 2.9], and thus TorRi (C,M) = 0
for any i ≥ 1. Since C ⊗R M ∈ WP(S), we have M ∈ WPC(R) by Lemma
3.1. Moreover, from the isomorphism M ∼= HomS(C,C ⊗R M), we get that
M ∈ WIC(R). So (2) holds.

(2) ⇒ (1). Since M is C-weak injective, there exists a weak injective left
S-module W such that M = HomS(C,W ). Let N be any weak injective left S-
module. Note that W,N ∈ BC(S) by [8, Theorem 2.2]. Then, by [15, Theorem
6.4(b)], we have

Ext1S(W,N) ∼= Ext1R(HomS(C,W ),HomS(C,N)) ∼= Ext1R(M,HomS(C,N)).

Since M is C-weak projective, Ext1R(M,HomS(C,N)) = 0. It follows that
Ext1S(W,N) = 0, and hence W is weak projective.

Consequently, M ∈ HC(W(S)), and so (1) holds. �

Remark 3.3. From the equivalence between (1) and (2) in Proposition 3.2, we
can see that the class of C-weak injective-projective left R-modules is just the
intersection of the class of C-weak injective left R-modules and that of C-weak
projective left R-modules. In particular, we have HC(W(R)) ⊥ WIC(R) and
WPC(R) ⊥ HC(W(R)).
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Definition 3.4. The C-weak injective-projective dimension of a module M ∈
ModR is defined that HC(W(R))- id(M) ≤ n if and only if there is an exact
sequence

0→M → HomS(C,W 0)→ HomS(C,W 1)→ · · · → HomS(C,Wn)→ 0

in ModR where each W i is both weak injective and weak projective.
If no such n exists, set HC(W(R))- id(M) =∞.

Next we give some characterization of the modules of finite C-weak injective-
projective dimension.

Lemma 3.5. The following are equivalent for a left R-module M :

(1) HC(W(R))- id(M) ≤ n.
(2) H(W(S))- id(C ⊗RM) ≤ n.
(3) M ∼= HomS(C,N) for some left S-module N with H(W(S))- id(N) ≤

n.
(4) M is C-weak projective and WIC(R)- id(M) ≤ n.
(5) M is C-weak projective and WI(S)- id(C ⊗RM) ≤ n.

Proof. (1) ⇒ (2). Assume that HC(W(R))- id(M) ≤ n, then there is an exact
sequence

0→M → HomS(C,W 0)→ HomS(C,W 1)→ · · · → HomS(C,Wn)→ 0

with each W i weak injective and weak projective. Since each W i is weak injec-
tive, we have W i ∈ BC(S) by [8, Theorem 2.2]. Then W i ∼= C⊗RHomS(C,W i)
by definition, and hence HomS(C,W i) ∈ AC(R). It follows from [15, Corollary
6.3] that M ∈ AC(R). Consider the following commutative diagram:

0 // C ⊗R M // C ⊗R HomS(C,W
0) //

∼=
��

· · · // C ⊗R HomS(C,W
n)

∼=
��

// 0

0 // C ⊗R M // W 0 // · · · // Wn // 0.

Since M and HomS(C,W i) are in AC(R), it is easy to verify that the upper
row is exact, and so is the lower row. Hence H(W(S))- id(C ⊗RM) ≤ n.

(2) ⇒ (3). Assume H(W(S))- id(C ⊗R M) ≤ n, that is, there is an exact
sequence

0 // C ⊗RM // W 0 // W 1 // · · · // Wn // 0

with each W i ∈ H(W(S)). In particular, each W i is weak injective, and hence
W i ∈ BC(S). So C ⊗R M ∈ BC(S) by [15, Corollary 6.3], and M ∈ AC(R).
It follows that M ∼= HomS(C,C ⊗R M). Therefore, (3) holds by setting N =
C ⊗RM .

(3) ⇒ (4). By the hypothesis, we have an exact sequence

0 // N // W 0 // W 1 // · · · // Wn // 0
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in ModS with each W i ∈ H(W(S)). In particular, each W i is weak projective.
By dimension shifting, we get that N is weak projective. Moreover, since each
W i is in BC(S), then so is N by [15, Corollary 6.3]. From this, we can easily
get that the sequence

0→M → HomS(C,W 0)→ HomS(C,W 1)→ · · · → HomS(C,Wn)→ 0

is exact, and M ∼= HomS(C,N) ∈ AC(R) and each HomS(C,W i) ∈ WIC(R).
Thus,WIC(R)- id(M) ≤ n. Furthermore, since C⊗RM ∼= C⊗RHomS(C,N) ∼=
N is weak projective, and TorRi (C,M) = 0 for any i ≥ 1, we have that M is
C-weak projective by Lemma 3.1.

(4) ⇒ (5). It follows from the fact WIC(R)-id(M) = WI(R)-id(C ⊗R M)
([8, Proposition 3.5]).

(5) ⇒ (1). Let M be C-weak projective. Then C ⊗RM is weak projective
by Lemma 3.1. Note that (WP(S),WI(S)) is a complete cotorsion pair, so
there is an exact sequence 0 → C ⊗R M → W 0 → V 1 → 0 in ModS with
W 0 weak injective and V 1 weak projective. Since V 1 is weak projective, we
have an exact sequence 0 → V 1 → W 1 → V 2 → 0 in ModS with W 1 weak
injective and V 2 weak projective. Continuing this process, one can easily get
the following exact sequence

0 // C ⊗RM // W 0 // W 1 // · · · // Wn // · · ·

such that each W i is weak injective. Moreover, since C ⊗R M and V 1 are
weak projective, it follows that W 0 is weak projective. Similarly, we can get
that each W i is weak projective. By the hypothesis WI(S)- id(C ⊗R M) ≤
n, so V n = Ker(Wn → Wn+1) is weak injective, and hence V n ∈ BC(S).
This implies C ⊗R M ∈ BC(S), and thus M ∈ AC(R). By definition, M ∼=
HomS(C,C ⊗RM). Now applying the functor HomS(C,−) to the above exact
sequence, we can get the following exact sequence

0→M → HomS(C,W 0)→ HomS(C,W 1)→ · · · → HomS(C, V n)→ 0.

From the above argument, we have that W i and V n are weak injective and
weak projective. Thus (1) follows. �

Now we give our main definition of this paper as follows.

Definition 3.6. Let SCR be a semidualizing bimodule. A complete WICI-
resolution is an exact complex

Y = · · · // W1
// W0

// I0 // I1 // · · ·

of left R-modules satisfying:

(1) Y is HomR(HC(W(R)),−)-exact;
(2) Each Wi is C-weak injective and each Ii is injective for any i ≥ 0.

A module M ∈ ModR is called C-Gorenstein weak injective (or GC-weak
injective for short) if there exists a complete WICI-resolution Y such that
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M ∼= Ker(I0 → I1). In this case, Y is called a complete WICI-resolution of
M . We denote by GCWI(R) the class of GC-weak injective left R-modules.

Remark 3.7.
(1) It is clear that every C-weak injective module is GC-weak injective by

definition and the fact that HC(W(R)) ⊥ WIC(R). In particular, if

SCR = RRR, then we call GC-weak injective modules G-weak injective
modules, and in this case, every weak injective left R-module is G-weak
injective.

(2) One can easily check that a module M ∈ ModR is GC-weak injective

if and only if M ∈ HC(W(R))
⊥

and there is a HomR(HC(W(R)),−)-
exact exact sequence · · · → W1 → W0 → M → 0 with each Wi ∈
WIC(R).

Proposition 3.8. Given an exact sequence 0→ L→M → N → 0. We have

(1) If L ∈ GCWI(R) and M ∈ WIC(R), then N ∈ GCWI(R).
(2) If L ∈ WIC(R) and N ∈ GCWI(R), then M ∈ GCWI(R).

Proof. (1) Since L ∈ GCWI(R), the sequence 0 → L → M → N → 0 is
HomR(HC(W(R)),−)-exact. Moreover, there is a HomR(HC(W(R)),−)-exact
exact sequence · · · → W1 → W0 → L → 0 with Wi ∈ WIC(R). So, by
assembling the two sequences, we get an exact sequence · · · → W1 → W0 →
M → N → 0. Thus one gets a HomR(HC(W(R)),−)-exact exact sequence
· · · → W1 → W0 → M → N → 0. Finally, from the fact HC(W(R)) ⊥
WIC(R) and the exact sequence

ExtiR(W,M)→ ExtiR(W,N)→ Exti+1
R (W,L)→ Exti+1

R (W,M),

it follows that ExtiR(W,N) ∼= Exti+1
R ((W,L) = 0 for any i ≥ 1 and any W ∈

HC(W(R)). Thus N is GC-weak injective.
(2) Let N ∈ GCWI(R). Then by definition there is an exact sequence

0 → N1 → W → N → 0 in ModR with W ∈ WIC(R) and N1 ∈ GCWI(R).
Consider the following pullback diagram:

0

��

0

��
N1

��

N1

��
0 // L // Q

��

// W

��

// 0

0 // L // M //

��

N

��

// 0

0 0



GORENSTEIN WEAK INJECTIVE MODULES 1399

Since L,W ∈ WIC(R), we haveQ ∈ WIC(R). Moreover, sinceN1 ∈ GCWI(R),
we have that M is GC-weak injective by (1) and the middle column of the above
diagram. �

The following result gives some characterization of the GC-weak injective
modules by replacing C-weak injective part in the sequence Y with C-weak
injective-projective modules.

Proposition 3.9. The following are equivalent for a left R-module M :

(1) M is GC-weak injective;
(2) There is a HomR(HC(W(R)),−)-exact exact sequence

Y = · · · // W1
// W0

// I0 // I1 // · · ·

with Wi ∈ HC(W(R)) and Ii injective for any i ≥ 0 such that M ∼=
Ker(I0 → I1);

(3) M ∈ HC(W(R))
⊥

and there is a HomR(HC(W(R)),−)-exact exact
sequence

· · · →W1 →W0 →M → 0

with Wi ∈ HC(W(R)).

Proof. (3) ⇒ (2) ⇒ (1) are trivial.
(1) ⇒ (3). Assume that M is a GC-weak injective left R-module. Then

by definition there is an exact sequence 0 → M1 → W → M → 0 with
W ∈ WIC(R) and M1 ∈ GCWI(R). So there exists a weak injective left
S-module E0 such that W = HomS(C,E0). Note that the cotorsion pair
(WP(S),WI(S)) is complete, so there exists an exact sequence

(�) 0→ E1 →W0 → E0 → 0

such that W0 → E0 is a weak projective precover and E1 is weak injective.
Moreover, since the class of weak injective modules is closed under exten-
sions, so W0 is weak injective. This implies that W0 ∈ H(W(S)) and hence
HomS(C,W0) ∈ HC(W(R)). By applying the functor HomS(C,−) to the se-
quence (�), we can get that the sequence

0→ HomS(C,E1)→ HomS(C,W0)→W → 0
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is exact. Now consider the following pullback diagram:

0

��

0

��
HomS(C,E1)

��

HomS(C,E1)

��
0 // Q

��

// HomS(C,W0)

��

// M // 0

0 // M1

��

// W //

��

M // 0

0 0

Since HomS(C,E1) ∈ WIC(R) and M1 ∈ GCWI(R), then Q ∈ GCWI(R)
by Proposition 3.8(1). Thus Q ∈ HC(W(R))⊥, and hence the middle row
in the above diagram is HomR(HC(W(R)),−)-exact. By repeating the above
argument to Q, one easily gets an exact sequence

0→ T → HomS(C,W1)→ Q→ 0

with W1 ∈ H(W(S)). Continuing this process, we may obtain an exact se-
quence

· · · → HomS(C,W2)→ HomS(C,W1)→ HomS(C,W0)→M → 0

with each Wi ∈ H(W(S)), as desired. �

Proposition 3.10.
(1) The class GCWI(R) is closed under extensions, cokernels of monomor-

phisms, direct summands and direct products.
(2) Given an exact sequence 0 → L → M → N → 0 with M,N ∈
GCWI(R). Then L ∈ GCWI(R) if and only if Ext1R(W,L) = 0 for
any W ∈ HC(W(R)).

Proof. (1) Let 0 → L → M → N → 0 be an exact sequence in ModR. If
L,N ∈ GCWI(R), then by Proposition 3.9, there are HomR(HC(W(R)),−)-
exact exact sequences:

· · · // W ′1
d′1 // W ′0

d′0 // L // 0

· · · // W ′′1
d′′1 // W ′′0

d′′0 // N // 0 ,
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such that all W ′i and W ′′i are in HC(W(R)), and all kernels of d′i and d′′i are in
GCWI(R). Consider the following diagram:

0 // W ′0
(1
0)//

d′0��

W ′0 ⊕W ′′0
(0 1) // W ′′0 //

d′′0��

0

0 // L
f //

��

M
g // N //

��

0

0 0

Since L is GC-weak injective, Ext1R(W ′′0 , L) = 0, and thus we have the following
exact sequence

0 // HomR(W ′′0 , L) // HomR(W ′′0 ,M) // HomR(W ′′0 , N) // 0 .

So there exists α : W ′′0 → M such that d′′0 = gα. For any (e′0, e
′′
0) ∈ W ′0 ⊕W ′′0 ,

we define d0 : W ′0 ⊕W ′′0 →M by d0(e′0, e
′′
0) = fd′0(e′0) + α(e′′0). Then it is easy

to verify that d0 makes the above diagram commute. By Snake Lemma, we
have the following commutative diagram:

0

��

0

��

0

��
0 // Kerd′0 //

��

Kerd0 //

��

Kerd′′0 //

��

0

0 // W ′0
(1
0) //

d′0��

W ′0 ⊕W ′′0
(0 1) //

d0
��

W ′′0 //

d′′0��

0

0 // L
f //

��

M
g //

��

N //

��

0

0 0 0

Since Kerd′0 and Kerd′′0 are GC-weak injective, Kerd′0,Kerd′′0 ∈ HC(W(R))
⊥

,

and so Kerd0 ∈ HC(W(R))
⊥

. In particular, the exact sequence 0 → Kerd0 →
W ′0 ⊕W ′′0 → M → 0 is HomR(HC(W(R)),−)-exact. Repeating this process,
we may get a HomR(HC(W(R)),−)-exact exact sequence

· · · // W ′1 ⊕W ′′1 // W ′0 ⊕W ′′0 // M // 0 ,

where each W ′i ⊕W ′′i is in HC(W(R)). Moreover, since L,N ∈ HC(W(R))
⊥

,

we have M ∈ HC(W(R))
⊥

. Therefore, M is in GCWI(R) by Proposition 3.9.
Now assume L,M ∈ GCWI(R). Then there is a HomR(HC(W(R)),−)-

exact exact sequence 0 → M1 → W → M → 0 with W ∈ WIC(R) and
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M1 ∈ GCWI(R). Consider the following pullback diagram:

0

��

0

��
M1

��

M1

��
0 // Q //

��

W //

��

N // 0

0 // L //

��

M //

��

N // 0

0 0

From the previous argument and the second column in the above diagram, we
have that Q is GC-weak injective. Moreover, by Proposition 3.8(2) and the
middle row in the above diagram, we have that N is in GCWI(R).

The closure of direct products follows directly from the definition.
Finally, since the class GCWI(R) is closed under cokernels of monomor-

phisms and direct products, then it is closed under direct summands from the
proof of [12, Proposition 1.4].

(2) “If ” part is trivial.
“Only if ” part. Since N ∈ GCWI(R), there is an exact sequence 0 →

N1 → W → N → 0 with W ∈ HC(W(R)) and N1 ∈ GCWI(R) by definition.
Consider the following pullback diagram:

0

��

0

��
N1

��

N1

��
0 // L // Q //

��

W

��

// 0

0 // L // M //

��

N //

��

0

0 0

By the middle column in the above diagram and (1), we have Q ∈ GCWI(R).
Moreover, by assumption, Ext1R(W,L) = 0, that is, the middle row in the above
diagram is split. So L is in GCWI(R) by (1). �

Now we give some equivalent descriptions of GC-weak injective modules,
which shows that an iteration of the procedure used to describe the class of GC-
weak injective modules yields exactly the class of GC-weak injective modules.
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Theorem 3.11. The following are equivalent for a left R-module M :

(1) M is GC-weak injective;
(2) There is a HomR(HC(W(R)),−)-exact exact sequence

G = · · · // G1
// G0

// G−1 // G−2 // · · ·

with each Gi ∈ GCWI(R) such that M ∼= Ker(G−1 → G−2);
(3) There is a HomR(GCWI(R),−)-exact exact sequence

G = · · · // G1
// G0

// G−1 // G−2 // · · ·

with each Gi ∈ GCWI(R) such that M ∼= Ker(G−1 → G−2).

Proof. (1)⇒ (3) holds by setting G = · · · // 0 // M
id // M // 0 // · · · .

(3) ⇒ (2) is trivial.
(2) ⇒ (1). Given a HomR(HC(W(R)),−)-exact exact sequence

G = · · · // G1
// G0

// G−1 // G−2 // · · ·

with eachGi ∈ GCWI(R) andM ∼= Ker(G−1 → G−2). SinceHC(W(R)) ⊥ Gi,
then HC(W(R)) ⊥ M by [21, Lemma 2.9]. Set M1 = Ker(G0 → G−1). Then
we have a HomR(HC(W(R)),−)-exact exact sequence 0→M1 → G0 →M →
0 such that M1 ∈ HC(W(R))

⊥
. Moreover, since G0 ∈ GCWI(R), there is a

HomR(HC(W(R)),−)-exact exact sequence 0 → G′0 → W0 → G0 → 0 with
W0 ∈ WIC(R) and G′0 ∈ GCWI(R). Consider the following pullback diagram:

0

��

0

��
G′0

��

G′0

��
0 // Q //

��

W0
//

��

M // 0

0 // M1
//

��

G0
//

��

M // 0

0 0

Since G′0,M1 ∈ HC(W(R))
⊥

, we have Q ∈ HC(W(R))
⊥

. Thus the sequence
0→ Q→ W0 → M → 0 is HomR(HC(W(R)),−)-exact. Let M2 = Ker(G1 →
G0). Then we get a HomR(HC(W(R)),−)-exact exact sequence 0 → M2 →
G1 → M1 → 0 with M2 ∈ HC(W(R))

⊥
. Now consider the following pullback
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diagram:

0

��

0

��
G′0

��

G′0

��
0 // M2

// G //

��

Q

��

// 0

0 // M2
// G1

//

��

M1
//

��

0

0 0

Now that G′0, G1 ∈ GCWI(R), we have G ∈ GCWI(R). Moreover, since M2 ∈
HC(W(R))

⊥
, the sequence 0 → M2 → G → Q → 0 is HomR(HC(W(R)),−)-

exact. Hence we have a HomR(HC(W(R)),−)-exact exact sequence · · · →
G3 → G2 → G→ Q→ 0. We repeat the argument by replacing M with Q to
get W1 ∈ WIC(R) and a HomR(HC(W(R)),−)-exact exact sequence 0→ T →
W1 → Q→ 0. Continuing this process, we may obtain a HomR(HC(W(R)),−)-
exact exact sequence

· · · →W2 →W1 →W0 →M → 0,

where each Wi is C-weak injective. This shows that M is GC-weak injective,
which completes the proof. �

4. Foxby equivalence of the modules with finite GC-weak injective
dimension

In this section, we investigate Foxby equivalence relative to the modules of
finite GC-weak injective dimension. Some known results in [19] are generalized.

Proposition 4.1. There are equivalences of categories

HC(W(R))
C⊗R− // H(W(S)).

HomS(C,−)
∼oo

Proof. We have that the functor HomS(C,−) maps H(W(S)) to HC(W(R))
by definition, and the functor C⊗R− maps HC(W(R)) to H(W(S)) by Propo-
sition 3.2. Since HC(W(R)) ⊆ AC(R) and H(W(S)) ⊆ BC(S), if M ∈
HC(W(R)) and N ∈ H(W(S)), then we have two natural isomorphisms:
M ∼= HomS(C,C ⊗R M) and C ⊗R HomS(C,N) ∼= N , which completes the
proof. �

Proposition 4.2. If M ∈ AC(R), then M is GC-weak injective if and only if
C ⊗RM is G-weak injective.
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Proof. LetM beGC-weak injective. Then there exists a HomR(HC(W(R)),−)-
exact exact sequence

· · · → HomS(C,W1)→ HomS(C,W0)→M → 0

in ModR with Wi ∈ H(W(S)). Since, in this sequence, each kernel and M are
in AC(R), by applying the functor C ⊗R− to it, we will get an exact sequence
· · · → C ⊗R HomS(C,W1)→ C ⊗R HomS(C,W0)→ C ⊗RM → 0. Moreover,
since each Wi is in BC(S), there is a natural isomorphism C⊗RHomS(C,Wi) ∼=
Wi, and hence there is an exact sequence · · · → W1 → W0 → C ⊗R M → 0.
Now let W ∈ H(W(S)), and consider the following commutative diagram

· · · //
S(W,W1)

��

//
S(W,W0) //

��

S(W,C ⊗R M)

��

// 0

· · · // R(S(C,W ), S(C,W1)) //
R(S(C,W ), S(C,W0)) //

R(S(C,W ),M) // 0,

where the symbols R(−,−) and S(−,−) stand for HomR(−,−) and HomS(−,−).
By the hypothesis and the isomorphism

HomS(W,Wi) ∼= HomS(C ⊗R HomS(C,W ),Wi)

∼= HomR(HomS(C,W ),HomS(C,Wi)),

we have that the top row is exact, that is, the sequence · · · → W1 → W0 →
C ⊗RM → 0 is HomR(H(W(S)),−)-exact. In addition, since

ExtiS(W,C ⊗RM) ∼= ExtiS(C ⊗R HomS(C,W ), C ⊗RM)

∼= ExtiS(HomS(C,W ),HomS(C,C ⊗RM))

∼= ExtiR(HomS(C,W ),M)

(1)

for any i ≥ 1, it follows that C⊗RM ∈ H(W(S))⊥. This shows that C⊗RM ∈
GWI(S).

Conversely, if C⊗RM is G-weak injective, then there is a HomR(H(W(S)),
−)-exact exact sequence · · · →W1 →W0 → C⊗RM → 0 with Wi ∈ H(W(S)).
Since M ∈ AC(R), C ⊗R M ∈ BC(S). Moreover, since each Wi is in BC(S),
we can get that all kernels in the above sequence are in BC(S). By applying
the functor HomS(C,−), we obtain the following exact sequence

· · · → HomS(C,W1)→ HomS(C,W0)→ HomS(C,C ⊗RM) ∼= M → 0.
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Now we will prove that this sequence is also HomR(HC(W(R)),−)-exact. In-
deed, for any W ∈ H(W(S)), consider the following commutative diagram

· · · //
S(W,W1)

µ1

��

//
S(W,W0)

//

µ0

��

S(W,C ⊗R M)

µ

��

// 0

· · · // R(C ⊗R S(C,W ),W1)

ν1

��

//
R(C ⊗R S(C,W ),W0)

//

ν0

��

R(C ⊗R S(C,W ), C ⊗R M)

ν

��

// 0

· · · // R(S(C,W ), S(C,W1))
//
R(S(C,W ), S(C,W0))

//
R(S(C,W ),M) // 0

where the morphisms µ, µ0 and µ1 are isomorphisms since W ∈ H(W(S)) ⊆
BC(S), and the morphisms ν, ν0 and ν1 are also isomorphisms by [20, Theorem
2.76]. Since the top row is exact by hypothesis, this implies that the middle
row is exact, and hence the bottom row is also exact. Finally, it follows from
the isomorphism: ExtiR(HomS(C,W ),M) ∼= ExtiR(W,C ⊗R M) given in (1)
that M is a GC-weak injective R-module. �

Proposition 4.3. There are equivalences of categories

GCWI(R) ∩ AC(R)
C⊗R− // GWI(S) ∩ BC(S).

HomS(C,−)
∼oo

Proof. By Proposition 4.2, we first have that the image of the functor C ⊗R −
under GCWI(R)∩AC(R) is in GWI(S). Also M ∈ AC(R) implies C ⊗RM ∈
BC(S). Therefore, if M ∈ GCWI(R) ∩ AC(R), then C ⊗R M ∈ GWI(S) ∩
BC(S).

We next show that the image of the functor HomS(C,−) under GWI(S) ∩
BC(S) is in GCWI(R) ∩ AC(R). In fact, let M ∈ GWI(S) ∩ BC(S). Then

M ∈ H(W(S))
⊥

and there is a HomS(H(W(S)),−)-exact exact sequence
· · · → W1 → W0 → M → 0 with Wi ∈ H(W(S)). By applying the func-
tor HomS(C,−) to it, since M and all kernels in this sequence are in BC(S),
we get an exact sequence

· · · → HomS(C,W1)→ HomS(C,W0)→ HomS(C,M)→ 0

and clearly HomS(C,Wi) ∈ HC(W(R)) for any i ≥ 0. Now let W̃ ∈ HC(W(R)).

Then there exists W ∈ H(W(S)) such that W̃ = HomS(C,W ). By applying

the functor HomR(W̃ ,−), we can get the following commutative diagram:

· · · //
R(W̃ , S(C,W1))

//
R(W̃ , S(C,W0))

//
R(W̃ , S(C,M)) // 0

· · · // R(S(C,W ), S(C,W1))

��

//
R(S(C,W ), S(C,W0))

//

��

R(S(C,W ), S(C,M))

��

// 0

· · · //
S(W,W1)

//
S(W,W0)

//
S(W,M) // 0
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Since the bottom row is exact, it follows that the top one is also exact. More-
over, from the isomorphism

ExtiR(W̃ ,HomS(C,M)) = ExtiR(HomS(C,W ),HomS(C,M)) ∼= ExtiR(W,M),

we have HomS(C,M) ∈ HC(W(R))
⊥

. Therefore, HomS(C,M) ∈ GCWI(R) ∩
AC(R).

Finally, if M ∈ GCWI(R) ∩ AC(R) and N ∈ GWI(S) ∩ BC(S), then by
definition we have two natural isomorphisms: M ∼= HomS(C,C ⊗R M) and
C ⊗R HomS(C,N) ∼= N , which complete the proof. �

Following Propositions 4.1, 4.3 and the classical Foxby equivalence, we have:

Theorem 4.4. (Foxby Equivalence) There are equivalences of categories

HC(W(R))
C⊗R− //

� _

��

H(W(S))
HomS(C,−)

∼oo � _

��
WIC(R)

C⊗R− //
� _

��

WI(S)
HomS(C,−)

∼oo � _

��
GCWI(R) ∩ AC(R)

C⊗R− //
� _

��

GWI(S) ∩ BC(S)
HomS(C,−)

∼oo � _

��
AC(R)

C⊗R− // BC(S).
HomS(C,−)

∼oo

Let n be a positive integer. For convenience, we set some notations as
follows:

H(W(S))≤n = the subcategory of those M with H(W(S))- id(M) ≤ n;

HC(W(R))≤n = the subcategory of those M with HC(W(R))- id(M) ≤ n;

GWI(S)≤n = the subcategory of those M with GWI(S)- id(M) ≤ n;

GCWI(R)≤n = the subcategory of those M with GCWI(R)- id(M) ≤ n,

where GCWI(R)- id(M) ≤ n means that there is an exact sequence

0→M → G0 → G1 → · · · → Gn → 0

in ModR where each Gi is GC-weak injective.

Proposition 4.5. There are equivalences of categories

HC(W(R))≤n
C⊗R− // H(W(S))≤n.

HomS(C,−)
∼oo
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Proof. First, if M ∈ HC(W(R))≤n, then C⊗RM ∈ H(W(S))≤n by Proposition
3.5. Now let M ∈ H(W(S))≤n. By definition there is an exact sequence
0→ M → W0 → W1 → · · · → Wn → 0 with Wi ∈ H(W(S)). Since M and all
cokernels are in BC(S), we obtain that the following sequence

0→ HomS(C,M)→ HomS(C,W0)→ · · · → HomS(C,Wn)→ 0

is exact. Moreover, HomS(C,W0) ∈ HC(W(R)) shows that HomS(C,M) ∈
HC(W(R))≤n, as desired. �

Proposition 4.6. There are equivalences of categories

GCWI(R)≤n ∩ AC(R)
C⊗R− // GWI(S)≤n ∩ BC(S).

HomS(C,−)
∼oo

Proof. Let M ∈ GCWI(R)≤n ∩ AC(R). We first claim that there is an exact
sequence (B) : 0 → M → G0 → W 1 → · · · → Wn → 0 with G0 ∈ GCWI(R)
and W i ∈ HC(W(R)). Indeed, since M ∈ GCWI(R)≤n, there is an exact
sequence

0→M → G0 → G1 → · · · → Gn → 0

in ModR where each Gi is GC-weak injective. Since Gn is GC-weak in-
jective, there is an exact sequence 0 → N → Wn → Gn → 0 such that
Wn ∈ HC(W(R)) and N ∈ GCWI(R). Let V i = Ker(Gi → Gi+1) for
1 ≤ i ≤ n− 1 and consider the following pullback diagram:

0

��

0

��
V n−1

��

V n−1

��
0 // N // Hn−1 //

��

Gn−1

��

// 0

0 // N // Wn //

��

Gn //

��

0

0 0

Since N and Gn−1 are GC-weak injective, so is Hn−1. By assembling the
middle column in the above diagram and the exact sequence · · · → Gn−3 →
Gn−2 → V n−1 → 0, we get the following exact sequence

· · · → Gn−3 → Gn−2 → Hn−1 →Wn → 0.

Now that Hn−1 is GC-weak injective, so there is an exact sequence 0→ N ′ →
Wn−1 → Hn−1 → 0 such that Wn−1 ∈ HC(W(R)) and N ′ ∈ GCWI(R).
Continuing this process, we may obtain the exact sequence (B) as claimed.
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Since M and W i are in AC(R) in the sequence (B), it is easy to verify that
G0 and all kernels are in AC(R). Thus we obtain the following exact sequence

0→ C ⊗RM → C ⊗R G0 → C ⊗RW 1 → · · · → C ⊗RWn → 0.

By Propositions 4.1 and 4.3, we have C ⊗R G0 ∈ GWI(S) and C ⊗R W i ∈
H(W(S)) ⊆ GWI(S), which induces that C ⊗RM ∈ GWI(S)≤n ∩ BC(S).

Now let M ∈ GWI(S)≤n∩BC(S). Then, as a special case for C = R, there is
an exact sequence 0→M → G0 →W 1 → · · · →Wn → 0 with G0 ∈ GWI(R)
and W i ∈ H(W(S)). Since M and W i are in BC(S), it is easy to verify that G0

and all cokernels are in BC(S). Thus we obtain the following exact sequence

0→ Hom(C,M)→ Hom(C,G0)→ Hom(C,W 1)→ · · · → Hom(C,Wn)→ 0.

By Propositions 4.1 and 4.3, Hom(C,G0) ∈ GCWI(R) and Hom(C,W i) ∈
HC(W(R)) ⊆ GCWI(R), which induces Hom(C,M) ∈ GCWI(R)≤n ∩AC(R).

�

By Propositions 4.5 and 4.6, one can easily obtain the following result, which
is the counterpart of [19, Theorem 4.6] in the present context.

Theorem 4.7. There are equivalences of categories

HC(W(R))≤n

C⊗R− //
� _

��

H(W(S))≤n
HomS(C,−)

∼oo � _

��
WIC(R)≤n

C⊗R− //
� _

��

WI(S)≤n
HomS(C,−)

∼oo � _

��
GCWI(R)≤n ∩ AC(R)

C⊗R− //
� _

��

GWI(S)≤n ∩ BC(S)
HomS(C,−)

∼oo � _

��
AC(R)

C⊗R− // BC(S).
HomS(C,−)

∼oo

We end this section with some description of GWI(S) ∩ BC(S), which is of
independent interest.

Definition 4.8. Let SCR be a semidualizing bimodule. A complete Hom-
WII-resolution is an exact complex

Y = · · · // W1
// W0

// I0 // I1 // · · ·
of left S-modules satisfying:

(1) Y is both HomS(H(W(S)),−)-exact and HomS(C,−)-exact;
(2) Each Wi is weak injective and each Ii is injective for any i ≥ 0.

We denote by GWIC(S) the modules M which arise in the following way:
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There exists a complete Hom-WII-resolution Y as above, such that

M ∼= Ker(I0 → I1).

We note that, WI(S) ⊆ GWIC(S) ⊆ GWI(S); and if C = R, then

GWIC(S) = GWI(S).

Proposition 4.9. GWI(S) ∩ BC(S) = GWIC(S).

Proof. Let M ∈ GWI(S) ∩ BC(S). Then there exists a HomS(H(W(S)),−)-
exact exact complex

Y = · · · // W1
// W0

// I0 // I1 // · · ·

in ModS with each Wi weak injective and each Ii injective such that M ∼=
Ker(I0 → I1). Note that M ∈ BC(S), and Ii and Wi belong to BC(S) by
[8, Theorem 2.2], one can easily verify that the complex Y is HomS(C,−)-

exact. Thus M ∈ GWIC(S).

Conversely, if M ∈ GWIC(S), then by definition there exists a exact com-
plex

Y = · · · // W1
// W0

// I0 // I1 // · · ·

in ModS with each Wi weak injective and each Ii injective such that M ∼=
Ker(I0 → I1) and Y is both HomS(H(W(S)),−)-exact and HomS(C,−)-
exact. Clearly, ExtiS(C,M) = 0 for any i ≥ 1. By definition, the sequence
HomS(C,Y):

· · · // HomS(C,W1) // HomS(C,W0) // HomS(C, I0) // HomS(C, I1) // · · ·

is exact and HomS(C,M) = Ker(HomS(C, I0) → HomS(C, I1)). Moreover,
since all Wi and Ii belong to BC(S) by [8, Theorem 2.2], the natural eval-
uation homomorphisms νWi : C ⊗R HomS(C,Wi) −→ Wi and νIi : C ⊗R
HomS(C, Ii) −→ Ii are isomorphisms. Now consider the following commuta-
tive diagram:

· · · // C ⊗R S(C,W1)

νW1∼=

��

// C ⊗R S(C,W0)

νW0∼=

��

// C ⊗R S(C, I
0)

ν
I0∼=

��

// C ⊗R S(C, I
1)

ν
I1∼=

��

// · · ·

· · · // W1
// W0

// I0 // I1 // · · ·

Then the sequence C ⊗R HomS(C,Y) is exact and that

C ⊗R HomS(C,M) ∼= Ker(C ⊗R HomS(C, I0)→ C ⊗R HomS(C, I1))

∼= Ker(I0 → I1) ∼= M.

Moreover, since all HomS(C, Ii) and HomS(C,W i) belong to AC(R), we have

TorRi (C,HomS(C, Ii)) = 0 = TorRi (C,HomS(C,W i)) for any i ≥ 1.
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By [21, Lemma 2.9(3)], we get that TorRi (C,HomS(C,M)) = 0 for any i ≥ 1.
Thus M ∈ BC(S), and so M ∈ GWI(S)∩BC(S), which shows that GWI(S)∩
BC(S) = GWIC(S). �

By Propositions 4.3 and 4.9, we immediately get the following result.

Corollary 4.10. There are equivalences of categories

GCWI(R) ∩ AC(R)
C⊗R− // GWIC(S).

HomS(C,−)
∼oo

5. Applications

In this section, we give some applications of GC-weak injective modules. We

show that every module in ̂GCWI(R) admits a special ̂HC(W(R))-precover and
a special GCWI(R)-preenvelope, and that the triple(

GCWI(R), ̂HC(W(R)),HC(W(R))
)

satisfies weak co-Auslander-Buchweitz context. In addition, we give a new
model structure in ModR and a dual pair induced by GC-weak injective mod-
ules.

5.1. Weak co-Auslander-Buchweitz context and approximations
In [11, p. 34], Hashimoto introduced the terminology of weak Auslander-

Buchweitz context (or weak AB-context for short). It is a triple (X ,Y, ω) of full
subcategories of an abelian category A which satisfies the following conditions:

(AB1) X is closed under extensions, epikernels and direct summands in A;
(AB2) Y is closed under monocokernels, extensions and direct summands in

A, and one has Y ⊆ X̃ where X̃ is the subcategory of left R-modules
with finite X -projective dimension;

(AB3) ω = X ∩ Y and ω is an injective cogenerator of X .

If, moreover X̃ = A, then (X ,Y, ω) is called Auslander-Buchweitz context
(or AB-context for short).

As a duality, we give the following definition.

Definition 5.1. A triple (X ,Y, ω) of full subcategories of an abelian cate-
gory A is called weak co-Auslander-Buchweitz context (weak co-AB-context for
short) if this triple satisfies the following conditions:

(coAB1) X is closed under extensions, monocokernels and direct summands in
A;

(coAB2) Y is closed under epikernels, extensions and direct summands in A,

and one has Y ⊆ X̂ where X̂ is the subcategory of left R-modules
with finite X -injective dimension;

(coAB3) ω = X ∩ Y and ω is a projective generator of X .
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If, moreover X̂ = A, then (X ,Y, ω) is called co-Auslander-Buchweitz context
(co-AB-context for short).

Lemma 5.2. The subcategory ŴIC(R) of left R-modules with finite WIC(R)-
injective dimension is closed under kernels of epimorphisms, extensions and
summands.

Proof. Easy. �

Lemma 5.3. The subcategory ̂HC(W(R)) is closed under kernels of epimor-

phisms, extensions and summands. Moreover, ̂HC(W(R)) ⊆ ̂GCWI(R).

Proof. Because ̂HC(W(R)) = ŴIC(R)∩WPC(R) by Lemma 3.5, andWPC(R)
is closed under kernels of epimorphisms, extensions and summands by defini-
tion. Thus the assertion follows from Lemma 5.2. �

Lemma 5.4. HC(W(R)) = GCWI(R)
⋂ ̂HC(W(R)) and HC(W(R)) is a pro-

jective generator of GCWI(R).

Proof. The containment HC(W(R)) ⊆ GCWI(R)
⋂ ̂HC(W(R)) is trivial.

Now let M ∈ GCWI(R)
⋂ ̂HC(W(R)). Then there is an exact sequence

0→M → Q→ N → 0

withQ ∈ HC(W(R)) andN ∈ ̂HC(W(R)). It is easy to verify that Ext1R(N,M)
= 0 since M ∈ GCWI(R). So M ∈ HC(W(R)) and hence the equality holds.

Moreover, HC(W(R)) is a projective generator of GCWI(R) by Proposition
3.9. �

Theorem 5.5. The triple
(
GCWI(R), ̂HC(W(R)),HC(W(R))

)
satisfies the

weak co-AB-context.

Proof. The assertion follows immediately from Proposition 3.10 and Lemmas
5.3, 5.4. �

By Theorem 5.5 and a dual result of [11, Theorem 1.12.10], we get immedi-
ately the following result.

Corollary 5.6.

(1) HC(W(R)) is a unique additive projective generator for GCWI(R)
in the sense that if P is a projective generator for GCWI(R), then
add(P) = HC(W(R)).

(2) Let M ∈ ̂GCWI(R). Then
(i) there exists an exact sequence 0 → L → W → M → 0 with

W ∈ ̂HC(W(R)) and L ∈ GCWI(R);
(ii) there exists an exact sequence 0 → M → N → W → 0 with

W ∈ ̂HC(W(R)) and N ∈ GCWI(R).
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(3) Let M ∈ ̂GCWI(R). Then the following are equivalent:
(i) M ∈ GCWI(R);

(ii) M ∈ ̂HC(W(R))
⊥

;

(iii) M ∈ ̂HC(W(R))
⊥1

;

(iv) M ∈ HC(W(R))
⊥

.

(4) Let M ∈ ̂GCWI(R). Then the following are equivalent:

(i) M ∈ ̂HC(W(R));
(ii) M ∈ ⊥GCWI(R);

(iii) M ∈ ⊥1GCWI(R);
(iv) inf{n | Extn+1

R (M,G) = 0 for any G ∈ GCWI(R)} < ∞ and
M ∈ ⊥HC(W(R)).

(5) Let M ∈ ̂GCWI(R). Then we have the equalities

GCWI(R)- id(M) = inf{n | Extn+1
R (W,M) = 0 for any W ∈ HC(W(R))}

= inf{n | Extn+1
R (W,M) = 0 for any W ∈ ̂HC(W(R))}.

(6) Let M ∈ ̂HC(W(R)). Then GCWI(R)- id(M) = HC(W(R))- id(M).
(7) Given an exact sequence 0 → L → M → N → 0. If any two of L, M

and N belong to ̂GCWI(R), then the third also belongs to ̂GCWI(R).

Remark 5.7.
(1) From the conditions (2)(i) and (3) of Corollary 5.6, we see that every

modules in ̂GCWI(R) admits a special ̂HC(W(R))-precover in the sense
that: Given a class F of modules and a module M , a special F-precover
of M is an epimorphism F → M such that F ∈ F and its kernel is in
F⊥1 (see [10, Definition 5.12]).

(2) From the conditions (2)(i) and (4) of Corollary 5.6, we see that every

modules in ̂GCWI(R) admits a special GCWI(R)-preenvelope in the
sense that: Given a class F of modules and a module M , a special
F-preenvelope of M is a monomorphism M → F such that F ∈ F and
its cokernel is in ⊥1F (see [10, Definition 5.12]).

In fact, we can get a more refined version of Corollary 5.6(2) as follows.

Theorem 5.8. Let M be a left R-module and n a nonnegative integer. The
following are equivalent:

(1) M ∈ GCWI(R)≤n;

(2) There exists an exact sequence 0 → L → W → M → 0 with W ∈
HC(W(R))≤n and L ∈ GCWI(R);

(3) There exists an exact sequence 0 → M → N → W → 0 with W ∈
HC(W(R))≤n−1 and N ∈ GCWI(R) (n ≥ 1).

Proof. (1)⇒ (2). We use induction on n. The case n = 0 holds by Proposition
3.9. Assume that it is true for the case n− 1 (n ≥ 1). Let M ∈ GCWI(R)≤n.
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Then there exists an exact sequence

0→M → G0 → G1 → · · · → Gn → 0

such that each Gi ∈ GCWI(R). Set f := Im(G0 → G1). We get two exact
sequences

0→M → G0 → f→ 0 and 0→ f→ G1 → · · · → Gn → 0,

that is, f ∈ GCWI(R)≤n−1. By induction hypothesis, there exists an exact

sequence 0 → L′ → W ′ → f → 0 with W ′ ∈ HC(W(R))≤n−1 and L′ ∈
GCWI(R).

Consider the following pullback diagram:

0

��

0

��
L′

��

L′

��
0 // M // T

��

// W ′

��

// 0

0 // M // G0 //

��

f

��

// 0

0 0

By the middle column and Proposition 3.10, we know that T ∈ GCWI(R).
Thus there is an exact sequence 0→ L→W0 → T → 0 with W0 ∈ HC(W(R))
and L ∈ GCWI(R) by Proposition 3.9. Consider the following pullback dia-
gram:

0

��

0

��
L

��

L

��
0 // W //

��

W0
//

��

W ′ // 0

0 // M //

��

T //

��

W ′ // 0

0 0

By the middle row and the fact W ′ ∈ HC(W(R))≤n−1, we have

W ∈ HC(W(R))≤n.

Thus the second column shows that the result holds for the case n.
(2)⇒ (1). Assume that there exists an exact sequence 0→ L→W →M →

0 with W ∈ HC(W(R))≤n and L ∈ GCWI(R). Since W ∈ HC(W(R))≤n,



GORENSTEIN WEAK INJECTIVE MODULES 1415

there is an exact sequence 0 → W → W 0 → W 1 → · · · → Wn → 0 with each
W i ∈ HC(W(R)). Set V := Im(W 0 → W 1). Then we have an exact sequence
0 → W → W 0 → V → 0 with W 0 ∈ HC(W(R)) and V ∈ HC(W(R))≤n−1.
Consider the following pushout diagram:

0

��

0

��
0 // L // W

��

// M

��

// 0

0 // L // W 0 //

��

Q

��

// 0

V

��

V

��
0 0

By Proposition 3.2, W 0 ∈ WIC(R), and hence by the middle row and Propo-
sition 3.8, we get Q ∈ GCWI(R). Thus M ∈ GCWI(R)≤n by considering the
exact sequence 0→M → Q→ V → 0.

(1) ⇒ (3) As a similar argument to the proof of (1) ⇒ (2), we have an
exact sequence 0 → M → G0 → f → 0 with G0 ∈ GCWI(R) and f ∈
GCWI(R)≤n−1. Applying (1) ⇒ (2) to f, we can get an exact sequence 0 →
L → W → f → 0 with W ∈ HC(W(R))≤n−1 and L ∈ GCWI(R). Consider
the following pullback diagram:

0

��

0

��
L

��

L

��
0 // M // T

��

// W

��

// 0

0 // M // G0 //

��

f

��

// 0

0 0

By the middle column and Proposition 3.10, we know that T ∈ GCWI(R).
The middle row of this diagram is just our desired sequence.

(3) ⇒ (1) is trivial. �

5.2. Model structure

Proposition 5.9. If ̂GWI(R) = ModR, that is, the triple(
GWI(R), ̂H(W(R)),H(W(R))

)
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satisfies the co-AB-context, then (WP(R) ∩ ŴI(R),GWI(R)) and (WP(R),

GWI(R) ∩ ŴI(R)) are complete cotorsion pairs.

Proof. By Lemma 3.5,WP(R)∩ŴI(R) = ̂H(W(R)). Moreover, by hypothesis
̂GWI(R) = ModR, and by Corollary 5.6, every left R-module has a special
̂H(W(R))-precover and has a special GWI(R)-preenvelope, and GWI(R) =

̂H(W(R))
⊥1

, ̂H(W(R)) = ⊥1GWI(R). Hence (WP(R) ∩ ŴI(R),GWI(R)) is
a complete cotorsion pair.

Since every weak injective left R-module is G-weak injective by definition,

we have WI(R) ⊆ GWI(R) ∩ ŴI(R). Next we will show that GWI(R) ∩
ŴI(R) ⊆ WI(R) by induction, and thus GWI(R) ∩ ŴI(R) = WI(R). Now

let M ∈ GWI(R) ∩ ŴI(R). The case WI(R)-id(M) = 0 is trivial. Suppose
that WI(R)-id(M) ≤ n < ∞. Then there is an exact sequence 0 → M →
W → N → 0 with W weak injective and WI(R)-id(N) ≤ n − 1. It is easy to
see that N is G-weak injective by Proposition 3.8. Thus N is weak injective
by induction. Moreover, since (WP(R),WI(R)) is a complete cotorsion pair,
there is an exact sequence 0 → L → Q → N → 0 with L weak injective, and
Q weak injective-projective. Consider the following pullback diagram:

0

��

0

��
L

��

L

��
0 // M // T

��

// Q

��

// 0

0 // M // W //

��

N

��

// 0

0 0

Since L and W are injective, T is weak injective. Furthermore, since M is
G-weak injective and Q is weak injective, we have Ext1R(Q,M) = 0. There-
fore the middle row in the above diagram is split. Thus M is weak injective.

Consequently, (WP(R),GWI(R) ∩ ŴI(R)) = (WP(R),WI(R)) is, of course,
a complete cotorsion pair. �

Combining with a relation between model structures and cotorsion pairs
given by Hovey in [16, Theorem 2.2], we get directly the following result.

Theorem 5.10. If ̂GWI(R) = ModR, then there is a model structure in which
the cofibrant objects are the weak projective left R-modules, the fibrant objects
are the GC-weak injective left R-modules and the trivial objects are the left
R-module with finite weak injective dimension.
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5.3. A dual pair induced by GCWI
In what follows, we assume that R is commutative, and C is a semidualizing

R-module.
In [14], Holm and Jøgensen introduced the notion of a duality pair and

demonstrated how the left half of such a pair is covering and preenveloping.
Let R be a ring. A duality pair over R is a pair (X ,Y), where X and Y are

two classes of R-modules, subject to the following conditions:

(1) For an R-module M , one has M ∈ X if and only if M+ ∈ Y.
(2) Y is closed under direct summands and finite direct sums.

A duality pair (X ,Y) is called (co)product-closed if the class X is closed
under (co)products in the category of all R-modules.

A duality pair (X ,Y) is called perfect if it is coproduct-closed, the class X
is closed under extensions and R belongs to X .

Lemma 5.11 ([14, Theorem 3.1]). Let (X ,Y) be a duality pair. Then X is
closed under pure submodules, pure quotients and pure extensions. Further-
more, the following hold:

(1) If (X ,Y) is product-closed, then X is preenveloping.
(2) If (X ,Y) is coproduct-closed, then X is covering.
(3) If (X ,Y) is perfect, then (X ,X⊥) is a perfect cotorsion pair.

Next we will construct a suitable dual pair induced by GCWI. Before
that, we recall that the subcategory of C-weak flat R-modules is denoted by
WFC(R) = {C ⊗R F | F is a weak flat R-module} in [8, Definition 2.1]. Also
we give the following definition.

Definition 5.12. Let C be a semidualizing R-module. A complete FWFC-
resolution is an exact complex

X = · · · // F1
// F0

// W 0 // W 1 // · · ·

of R-modules satisfying the following:

(1) X is HC(W(R))⊗R − exact;
(2) Each W i is C-weak flat and each Fi is flat for any i ≥ 0.

An R-module M is called GC-weak flat if there exists a complete FWFC-
resolution X such that M ∼= Ker(W 0 → W 1), in which X is called a complete
FWFC-resolution of M .

We denote by GCWF(R) the subcategory consisting of GC-weak flat R-
modules.

Proposition 5.13. Let C be a faithfully semidualizing bimodule.

(1) M is a GC-weak flat R-module if and only if TorRi (M,HC(W(R))) = 0
for any i ≥ 1 and there exists a HC(W(R))⊗R − exact exact sequence
0→M →W 0 →W 1 → · · · with each W i ∈ WFC(R).

(2) If M is a C-weak flat R-module, then M ∈ GCWF(R).
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Proof. Easy. �

Proposition 5.14. The following statements are equivalent for an R-module
M :

(1) M is a GC-weak flat R-module;
(2) M+ is a GC-weak injective R-module.

Proof. (1) ⇒ (2). Let M be a GC-weak flat R-module. Then, by Proposition
5.13 and [20, Theorem 11.54], we have

ExtiR(HC(W(R)),M+) ∼= TorRi (HC(W(R)),M)+ = 0

for any i ≥ 1. Next it suffices to show that there exists a HomR(HC(W(R)),−)-
exact WIC(R)-resolution of M+ by Remark 3.7. Since M is GC-weak flat,
there exists an exact sequence

F = 0 −→M −→ C ⊗R F 0 −→ C ⊗R F 1 −→ · · ·
such that the complex HC(W(R)) ⊗R F is exact, where each F i is weak flat.
This implies that the complex

F+ = · · · −→ (C ⊗R F 1)+ −→ (C ⊗R F 0)+ −→M+ −→ 0

is exact, and thus the complex

F+ = · · · −→ HomR(C, (F 1)+) −→ HomR(C, (F 0)+) −→M+ −→ 0

is exact with each (F i)+ weak injective. Since HC(W(R)) ⊗R F is exact, it
follows that the complex (HC(W(R))⊗R F)+ is exact. Moreover, we have

HomR(HC(W(R)), (C ⊗R F i)+) ∼= (HC(W(R))⊗R C ⊗R F i)+.

This implies that the complex HomR(HC(W(R)),F+) is exact. Therefore M+

is GC-weak injective.
(2)⇒ (1). Let M+ be a GC-weak injective R-module. To prove that M is a

GC-weak flat R-module, we will construct a HC(W(R))⊗R− exact WFC(R)-
coresolution of M . Now if we can construct a short exact sequence

(†) 0 −→M −→ F 0 −→ L1 −→ 0,

where F 0 is C-weak flat and (L1)+ is GC-weak injective, then the WFC(R)-
coresolution of M can be constructed recursively. That is, we can conclude an
exact sequence

F = 0 −→M −→ F 0 −→ F 1 −→ · · · ,
where each Fn is C-weak flat, and (Ln)+ is GC-weak injective for each Ln =
Ker(Fn → Fn+1). Let I ∈ HC(W(R)). Then

(TorRi (Ln, I))+ ∼= ExtiR(I, (Ln)+) = 0

for any i ≥ 1. It follows that TorRi (Ln, I) = 0 for any i ≥ 1. Therefore F is
HC(W(R))⊗R − exact and TorRi (M,HC(W(R))) = 0 for any i ≥ 1.

Next it suffices to construct the short exact sequence (†). By assumption,
the module M+ is GC-weak injective. So we have a short exact sequence
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0 −→ Z −→ E −→ M+ −→ 0, where E is C-weak injective by definition. It
follows that the sequence 0 −→ M++ −→ E+ −→ Z+ −→ 0 is exact. Note
that M , being a pure submodule of M++ (see [22, Exercise 41, p. 48]), embeds
in a C-weak flat R-module (for E+ is C-weak flat by [8, Proposition 2.6]).
Since every module admits a C-weak flat preenvelope by [8, Theorem 2.12(1)],
we assume that ϕ : M −→ F 0 is a C-weak flat preenvelope of M , then ϕ is
injective. Set L1 = Cokerϕ. Then we have an exact sequence

(‡) 0 −→M −→ F 0 −→ L1 −→ 0.

Next we will prove that (L1)+ is GC-weak injective. From (‡) we get a short
exact sequence

0 −→ (L1)+ −→ (F 0)+
ϕ+

−→M+ −→ 0,

where (F 0)+ is C-weak injective by [8, Proposition 2.6]. Since M+ is GC-weak
injective by assumption, it is enough to show that Ext1R(J, (L1)+) = 0 for all
J ∈ HC(W(R)) by Proposition 3.10(2). But Ext1R(J, (L1)+) vanishes if and
only if the map

HomR(J, ϕ+)) : HomR(J, (F 0)+) −→ HomR(J,M+)

is surjective (where Ext1R(J, (F 0)+) = 0 since (F 0)+ is C-weak injective), so
we consider the commutative diagram

HomR(J, (F 0)+)
HomR(J,ϕ+) //

∼=
��

HomR(J,M+)

∼=
��

HomR(F 0, J+)
HomR(ϕ,J+) // HomR(M,J+).

The module J+ is C-weak flat, and ϕ is a C-weak flat preenvelope of M , so the
map HomR(ϕ, J+) is surjective, and hence so is HomR(J, ϕ+). This completes
the proof. �

Now we are able to give the main result in this subsection.

Theorem 5.15. The pair (GCWF(R),GCWI(R)) is a coproduct-closed duality
pair. In particular, GCWF(R) is covering.

Proof. By Propositions 5.14 and 3.10, we have (GCWF(R),GCWI(R)) is a
duality pair. It is easy to check that the class GCWF(R) is closed under
coproducts, so (GCWF(R),GCWI(R)) is coproduct-closed. Thus the assertion
holds by Lemma 5.11. �
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