DOI QR코드

DOI QR Code

Dynamic analysis of immersion concrete pipes in water subjected to earthquake load using mathematical methods

  • Haghighi, Mohammad Salkhordeh (Department of Civil Engineering, Faculty of Engineering, University of Zabol) ;
  • Keikha, Reza (Department of Civil Engineering, Faculty of Engineering, University of Zabol) ;
  • Heidari, Ali (Department of Civil Engineering, Faculty of Engineering, University of Zabol)
  • 투고 : 2018.05.02
  • 심사 : 2018.05.30
  • 발행 : 2018.10.25

초록

In this paper, dynamic analysis of concrete pipe submerged in the fluid and conveying fluid is studied subjected to earthquake load. The structure is modeled by classical shell theory and the force induced by internal fluid is obtained by Navier-Stokes equation. Applying energy method and Hamilton's principle, the motion equations are derived. Based on Navier and Newmark methods, the dynamic deflection of the structure is calculated. The effects of different parameters such as mode number, thickness to radius ratios, length to radius ratios, internal and external fluid are discussed on the seismic response of the structure. The results show that considering internal and external fluid, the dynamic deflection increases.

키워드

참고문헌

  1. Abdoun, T.H., Ha, D., O'Rourke, M., Symans, M., O'Rourke, T., Palmer, M. and Harry, E. (2009), "Factors influencing the behavior of buried pipelines subjected to earthquake faulting", Soil Dyn. Earthq. Eng., 29, 415-427. https://doi.org/10.1016/j.soildyn.2008.04.006
  2. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  3. Alijani, F. and Amabili, M. (2014), "Nonlinear vibrations and multiple resonances of fluid filled arbitrary laminated circular cylindrical shells", Compos. Struct., 108, 951-962.
  4. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  5. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283.
  6. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  7. Belkorissat, I., Houari, M.S.A., Tounsi, A. and Hassan, S. (2015), "On vibration properties of functionally graded nanoplate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  8. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695 - 702. https://doi.org/10.12989/SEM.2017.62.6.695
  9. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Brazil Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  10. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423 - 431. https://doi.org/10.1080/15376494.2014.984088
  11. Bessaim, A., Houari, M.S.A. and Tounsi, A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  12. Besseghier, A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  13. Bouafia, Kh., Kaci, A., Houari M.S.A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19, 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  14. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85 - 104. https://doi.org/10.12989/scs.2013.14.1.085
  15. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016b), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  16. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  17. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227 - 249. https://doi.org/10.12989/SCS.2016.20.2.227
  18. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409 - 423. https://doi.org/10.12989/SCS.2015.18.2.409
  19. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016a), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  20. Brush, O. and Almorth, B. (1975), Buckling of Bars, Plates and Shells, Mc-Graw Hill.
  21. Chen, W., Shih, B.J., Chen, Y.C., Hung, J.H. and Hwang, H.H. (2002), "Seismic response of natural gas and water pipelines in the Ji-Ji earthquake", Soil Dyn. Earthq. Eng., 22, 1209-1214. https://doi.org/10.1016/S0267-7261(02)00149-5
  22. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  23. Dey, T. and Ramachandra, L.S. (2017), "Non-linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100.
  24. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11, 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  25. Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Van Thanh, N. (2017a), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundation", Thin Wall. Struct., 115, 300-310.
  26. Duc, N.D., Hadavinia, H., Van Thu, P. and Quan, T.Q. (2015), "Vibration and nonlinear dynamic response of imperfect threephase polymer nanocomposite panel resting on elastic foundations under hydrodynamic loads", Compos. Struct., 131, 229-237.
  27. Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017b), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032
  28. Duc, N.D., Seung-Eock, K., Quan, T.Q., Long, D.D. and Anh, V.M. (2018), "Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell", Compos. Struct., 184, 1137-1144. https://doi.org/10.1016/j.compstruct.2017.10.064
  29. Duc, N.D., Tran, Q.Q. and Nguyen, D.K. (2017c), "New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature", Aerosp. Sci. Technol., 71, 360-372. https://doi.org/10.1016/j.ast.2017.09.031
  30. Ghavanloo, E. and Fazelzadeh, A. (2011), "Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid", Physica E, 44, 17-24.
  31. Ghavanloo, El-Haina, F., Bakora, A., Bousahla, A.A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  32. Gong, S.W., Lam, K.Y. and Lu, C. (2000), "Structural analysis of a submarine pipeline subjected to underwater shock", Int. J. Pres. Ves. Pip., 77, 417-423.
  33. Huang, Y.M., Liu, Y.S., Li, B.H., Li, Y.J. and Yue, Z.F. (2010), "Natural frequency analysis of fluid conveying pipeline with different boundary conditions", Nucl. Eng. Des., 240(3), 461-467. https://doi.org/10.1016/j.nucengdes.2009.11.038
  34. Inozemtcev, A.S., Korolev, E.V. and Smirnov, V.A. (2017), "Nanoscale modifier as an adhesive for hollow microspheres to increase the strength of high-strength lightweight concrete", Struct. Concrete, 18(1), 67-74. https://doi.org/10.1002/suco.201500048
  35. JafarianArani, A and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  36. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  37. Kim, DH, Lee, GN, Lee, Y. and Lee, IK. (2015), "Dynamic reliability analysis of offshore wind turbine support structure under earthquake", Wind Struct., 21, 609-623. https://doi.org/10.12989/was.2015.21.6.609
  38. Lam, K.Y., Zong, Z. and Wang, Q.X. (2003), "Dynamic response of a laminated pipeline on the seabed subjected to underwater shock", Compos. Part B-Eng., 34, 59-66.
  39. Larbi Chaht, F., Kaci, A., Houari M.S.A. and Hassan, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425 -442. https://doi.org/10.12989/scs.2015.18.2.425
  40. Lee, U. and Oh, H. (2003), "The spectral element model for pipelines conveying internal steady flow", Eng. Struct., 25, 1045-1055. https://doi.org/10.1016/S0141-0296(03)00047-6
  41. Lin, W. and Qiao, N. (2008), "Vibration and stability of an axially moving beam immersed in fluid", Int. J. Solid. Struct., 45, 1445-1457.
  42. Liu, X., Zhang, H., Gu X., Chen, Y., Xia, M. and Wu, K. (2017), "Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults", Earthq. Struct., 12, 321-332. https://doi.org/10.12989/eas.2017.12.3.321
  43. Liu, Z.G., Liu, Y. and Lu, J. (2012), "Fluid-structure interaction of single flexible cylinder in axial flow", Comput. Fluid., 56, 143-151.
  44. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508.
  45. Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Meth. Appl. Mech. Eng., 303, 75-100.
  46. Menasria, A., Bouhadra, A., Tounsi, A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  47. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A.T. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  48. Mohammadian, H., Kolahchi, R. and Rabani Bidgoli, M. (2017), "Dynamic response of concrete beams reinforced by $Fe_{2}O_{3}$ nanoparticles subjected to magnetic field and earthquake load", Earthq. Struct., 13, 589-598.
  49. Motezaker, M. and Kolahchi, R. (2017), "Seismic response of $SiO_{2}$ nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/CAC.2017.19.6.745
  50. Mouffoki, A., Adda Bedia, E.A., Houari M.S.A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  51. Nogueira, A.C. (2012), "Rationally modeling collapse due to bending and external pressure in pipelines", Earthq. Struct., 3, 473-494. https://doi.org/10.12989/eas.2012.3.3_4.473
  52. Rabani Bidgoli, M. and Saeidifar, M. (2017), "Time-dependent buckling analysis of $SiO_{2}$ nanoparticles reinforced concrete columns exposed to fire", Comput. Concrete, 20(2), 119-127. https://doi.org/10.12989/CAC.2017.20.2.119
  53. Ray, M.C. and Reddy, J.N. (2013), "Active damping of laminated cylindrical shells conveying fluid using 1-3 piezoelectric composites", Compos. Struct., 98, 261-271. https://doi.org/10.1016/j.compstruct.2012.09.051
  54. Safari Bilouei, B., Kolahchi, R. and Rabanibidgoli, M. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/CAC.2016.18.5.1053
  55. Shamsuddoha, M., Islam, M.M., Aravinthan, T., Manalo, A. and Lau, K.T. (2013), "Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs", Compos. Struct., 100, 40-54. https://doi.org/10.1016/j.compstruct.2012.12.019
  56. Sharifi, M., Kolahchi, R. and Rabani Bidgoli, M. (2018), "Dynamic analysis of concrete beams reinforced with Tio2 nano particles under earthquake load", Wind Struct., 26, 1-9.
  57. Shokravi M. (2017), "Vibration analysis of silica nanoparticlesreinforced concrete beams considering agglomeration effects", Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333
  58. Simsek, M. (2010), "Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load", Compos. Struct., 92, 2532-2546. https://doi.org/10.1016/j.compstruct.2010.02.008
  59. Su, Y., Li, J., Wu, C and Li, Z.X. (2016), "Influences of Nanoparticles on Dynamic Strength of Ultra-High Performance Concrete", Compos. Part B-Eng., 91, 595-609. https://doi.org/10.1016/j.compositesb.2016.01.044
  60. Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FGCNTRC) shear deformable plates with temperature-dependent material properties", J. Therm. Stress., 40, 1254-1274.
  61. Thinh, T.I. and Nguyen, M.C. (2016), "Dynamic Stiffness Method for free vibration of composite cylindrical shells containing fluid", Appl. Math. Model., 40, 9286-9301. https://doi.org/10.1016/j.apm.2016.06.015
  62. Van Thu, P. and Duc, N.D. (2016), "Non-linear dynamic response and vibration of an imperfect three-phase laminated nanocomposite cylindrical panel resting on elastic foundations in thermal environment", Sci. Eng. Compos. Mater., 24 (6), 951-962. https://doi.org/10.1515/secm-2015-0467
  63. Yoon, H.I. and Son, I. (2007), "Dynamic response of rotating flexible cantilever fluid with tip mass", Int. J. Mech. Sci., 49, 878-887. https://doi.org/10.1016/j.ijmecsci.2006.11.006
  64. Zamani Nouri, A. (2017), "Mathematical Modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses", Comput. Concrete, 19(3), 325-331. https://doi.org/10.12989/cac.2017.19.3.325
  65. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/SEM.2015.54.4.693
  66. Zhai, H., Wu, Z., Liu, Y. and Yue, Z. (2011), "Dynamic response of pipeline conveying fluid to random excitation", Nucl. Eng. Des., 241, 2744-2749. https://doi.org/10.1016/j.nucengdes.2011.06.024
  67. Zhou, X.Q., YU, D.Y., Shao, X.Y., Zhang, C.Y. and Wang, S. (2017), "Dynamics characteristic of steady fluid conveying in the periodical partially viscoelastic composite pipeline", Compos. Part B-Eng., 111, 387-408.
  68. Zidi, M., Tounsi, A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001