참고문헌
- Eltzschig HK, Eckle T. Ischemia and reperfusion - from mechanism to translation. Nat Med 2011;17:1391-401. https://doi.org/10.1038/nm.2507
- Schrier RW, Wang W, Poole B, Mitra A. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 2004;114:5-14. https://doi.org/10.1172/JCI200422353
- Case J, Khan S, Khalid R, Khan A. Epidemiology of acute kidney injury in the intensive care unit. Crit Care Res Pract 2013; 2013:479730.
- Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 2012;81:442-8. https://doi.org/10.1038/ki.2011.379
- He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 2017;92:1071-83. https://doi.org/10.1016/j.kint.2017.06.030
- Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH, et al. Progression after AKI: Understanding Maladaptive Repair Processes to Predict and Identify Therapeutic Treatments. J Am Soc Nephrol 2016;27:687-97. https://doi.org/10.1681/ASN.2015030309
- Molitoris BA. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest 2014;124:2355-63. https://doi.org/10.1172/JCI72269
- Agarwal A, Dong Z, Harris R, Murray P, Parikh SM, Rosner MH, et al. Cellular and Molecular Mechanisms of AKI. J Am Soc Nephrol 2016;27: 1288-99. https://doi.org/10.1681/ASN.2015070740
- Weinberg JM, Venkatachalam MA, Roeser NF, Saikumar P, Dong Z, Senter RA, et al. Anaerobic and aerobic pathways for salvage of proximal tubules from hypoxia-induced mitochondrial injury. Am J Physiol Renal Physiol 2000;279:F927-43. https://doi.org/10.1152/ajprenal.2000.279.5.F927
- Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol 2012;2:1303-53.
- Nourbakhsh N, Singh P. Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury. Nephron Clin Pract 2014;127:149-52. https://doi.org/10.1159/000363545
- Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol 2017;13:629-46. https://doi.org/10.1038/nrneph.2017.107
- Stallons LJ, Funk JA, Schnellmann RG. Mitochondrial Homeostasis in Acute Organ Failure. Curr Pathobiol Rep 2013;1:10.
- Hall AM, Schuh CD. Mitochondria as therapeutic targets in acute kidney injury. Curr Opin Nephrol Hypertens 2016;25:355-62. https://doi.org/10.1097/MNH.0000000000000228
- Forbes JM. Mitochondria-Power Players in Kidney Function? Trends Endocrinol Metab 2016;27:441-2. https://doi.org/10.1016/j.tem.2016.05.002
- Chandel NS. Evolution of Mitochondria as Signaling Organelles. Cell Metab 2015;22:204-6. https://doi.org/10.1016/j.cmet.2015.05.013
- Mandel LJ. Primary active sodium transport, oxygen consumption, and ATP: coupling and regulation. Kidney Int 1986;29:3-9. https://doi.org/10.1038/ki.1986.2
- Simon N, Hertig A. Alteration of Fatty Acid Oxidation in Tubular Epithelial Cells: From Acute Kidney Injury to Renal Fibrogenesis. Front Med (Lausanne) 2015;2:52.
- Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 2011;121:4210-21. https://doi.org/10.1172/JCI45161
- Szeto HH. Pharmacologic Approaches to Improve Mitochondrial Function in AKI and CKD. J Am Soc Nephrol 2017;28:2856-65. https://doi.org/10.1681/ASN.2017030247
- Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014;5:282.
- Idrovo JP, Yang WL, Nicastro J, Coppa GF, Wang P. Stimulation of carnitine palmitoyltransferase 1 improves renal function and attenuates tissue damage after ischemia/reperfusion. J Surg Res 2012;177:157-64. https://doi.org/10.1016/j.jss.2012.05.053
- Portilla D. Role of fatty acid beta-oxidation and calcium-independent phospholipase A2 in ischemic acute renal failure. Curr Opin Nephrol Hypertens 1999;8:473-7. https://doi.org/10.1097/00041552-199907000-00012
- Bobulescu IA. Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens 2010;19:393-402. https://doi.org/10.1097/MNH.0b013e32833aa4ac
- Weinberg JM. Lipotoxicity. Kidney Int 2006;70:1560-6. https://doi.org/10.1038/sj.ki.5001834
- Zager RA, Johnson AC, Hanson SY. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int 2005;67:111-21. https://doi.org/10.1111/j.1523-1755.2005.00061.x
- Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003;100:3077-82. https://doi.org/10.1073/pnas.0630588100
- Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 2015;21:37-46. https://doi.org/10.1038/nm.3762
- Tran M, Parikh SM. Mitochondrial biogenesis in the acutely injured kidney. Nephron Clin Pract 2014;127:42-5. https://doi.org/10.1159/000363715
- Weinberg JM. Mitochondrial biogenesis in kidney disease. J Am Soc Nephrol 2011;22:431-6. https://doi.org/10.1681/ASN.2010060643
- Portilla D. Energy metabolism and cytotoxicity. Semin Nephrol 2003;23:432-8. https://doi.org/10.1016/S0270-9295(03)00088-3
- Portilla D, Dai G, McClure T, Bates L, Kurten R, Megyesi J, et al. Alterations of PPARalpha and its coactivator PGC-1 in cisplatin-induced acute renal failure. Kidney Int 2002;62:1208-18. https://doi.org/10.1111/j.1523-1755.2002.kid553.x
- Portilla D, Dai G, Peters JM, Gonzalez FJ, Crew MD, Proia AD. Etomoxir-induced PPARalpha-modulated enzymes protect during acute renal failure. Am J Physiol Renal Physiol 2000;278:F667-75. https://doi.org/10.1152/ajprenal.2000.278.4.F667
- Portilla D, Li S, Nagothu KK, Megyesi J, Kaissling B, Schnackenberg L, et al. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int 2006;69:2194-204. https://doi.org/10.1038/sj.ki.5000433
- Nagothu KK, Bhatt R, Kaushal GP, Portilla D. Fibrate prevents cisplatin-induced proximal tubule cell death. Kidney Int 2005;68:2680-93. https://doi.org/10.1111/j.1523-1755.2005.00739.x
- Li S, Wu P, Yarlagadda P, Vadjunec NM, Proia AD, Harris RA, et al. PPAR alpha ligand protects during cisplatin-induced acute renal failure by preventing inhibition of renal FAO and PDC activity. Am J Physiol Renal Physiol 2004;286:F572-80. https://doi.org/10.1152/ajprenal.00190.2003
- Kamijo Y, Hora K, Kono K, Takahashi K, Higuchi M, Ehara T, et al. PPARalpha protects proximal tubular cells from acute fatty acid toxicity. J Am Soc Nephrol 2007;18:3089-100. https://doi.org/10.1681/ASN.2007020238
- Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005;366:1849-61. https://doi.org/10.1016/S0140-6736(05)67667-2
- Cases A, Coll E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int Suppl 2005:S87-93.
- Idrovo JP, Yang WL, Matsuda A, Nicastro J, Coppa GF, Wang P. Post-treatment with the combination of 5-aminoimidazole-4-carboxyamide ribonucleoside and carnitine improves renal function after ischemia/reperfusion injury. Shock 2012;37:39-46. https://doi.org/10.1097/SHK.0b013e31823185d7
- Mister M, Noris M, Szymczuk J, Azzollini N, Aiello S, Abbate M, et al. Propionyl-L-carnitine prevents renal function deterioration due to ischemia/reperfusion. Kidney Int 2002;61:1064-78. https://doi.org/10.1046/j.1523-1755.2002.00212.x