DOI QR코드

DOI QR Code

GM 파파야 개발 및 생물안전성 평가 연구 동향

Research status of the development of genetically modified papaya (Carica papaya L.) and its biosafety assessment

  • 김호방 ((주)바이오메딕 생명과학연구소) ;
  • 이이 (충북대학교 특용식물학과) ;
  • 김창기 (한국생명공학연구원 바이오평가센터)
  • Kim, Ho Bang (Life Sciences Research Institute, Biomedic Co., Ltd.) ;
  • Lee, Yi (Department of Industrial Plant Science and Technology, Chungbuk National University) ;
  • Kim, Chang-Gi (Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology)
  • 투고 : 2018.04.10
  • 심사 : 2018.06.01
  • 발행 : 2018.09.30

초록

파파야는 열대와 아열대 지역에서 광범위하게 재배되고 있는 주요 작물 중의 하나이다. 파파야 열매는 칼로리가 낮고 비타민 A와 C, 미네랄이 풍부하며, 미숙과에는 단백질 분해 효소인 파파인이 풍부하여 의약품, 화장품, 식품 가공 산업 등에 널리 활용되고 있다. 전세계 파파야 산업에서 가장 중요한 제한 요인 중의 하나가 potyvirus에 속하는 papaya ringspot virus (PRSV)에 의해 야기되는 식물병이다. 1992년에 미국 연구자들에 의해 PRSV의 coat protein (cp) 유전자를 발현하는 최초의 PRSV-저항성 GM 파파야 이벤트($R_0$ '55-1')가 만들어졌으며, 1997년에는 이로부터 유래한 GM 품종('SunUp', 'Rainbow')에 대해 미국 정부가 상업적 재배를 승인하였다. 현재까지 GM 파파야 개발은 해충 저항성, 병 저항성(곰팡이, 바이러스), 수확 후 저장성 증대, 알루미늄과 제초제 저항성 등의 형질에 초점을 맞추어 왔다. 아울러 파파야를 동물단백질(백신 등) 생산을 위한 식물공장으로 활용하기 위한 시도도 이루어졌다. 현재, 미국과 중국을 비롯한 약 17개 국가에서 GM 파파야 개발과 포장 실험 또는 상업적 재배가 이루어지고 있다. GM 파파야의 개발과 더불어 생물안전성 평가 및 GM 판별 기술 개발에 관한 연구도 이루어지고 있다. 생물안전성 평가와 관련하여 주로 인체 위해성과 환경 위해성에 관한 분석이 수행되고 있다. 인체 위해성의 경우, 동물 모델을 대상으로 장기간 식이섭취를 통해 일반 및 유전 독성, 알레르기항원성, 면역 반응, GM 유래 단백질의 안정성에 관한 연구가 수행되었다. 환경 위해성의 경우, GM 재배가 토양 미생물 다양성에 미치는 영향, GM 유래 유전물질의 토양 잔류 및 토양 미생물로의 전이 여부에 관한 연구가 이루어졌다. 우리나라, 유럽 및 일본을 비롯한 많은 나라에서는 상업적 재배를 위한 GM 품종 도입이나, 파파야 가공 식품 제조에 비승인 GM 파파야의 사용을 규제하고 있다. 도입 유전자 특이적 또는 이벤트 특이적인 분자표지를 개발하고, PCR(일반, real-time) 또는 loop-mediated isothermal amplification 방법을 통해 GM 여부를 판별하고 있다. 파파야에 대한 초안 수준의 유전체 정보가 2008년에 해독되었으며, 최근에는 차세대 유전체 분석 기술로 확보된 유전체와 전사체 정보를 활용하여 GM 여부를 판별하는 기술도 확립되었다.

Papaya (Carica papaya L.) is one of the crops widely planted in tropical and subtropical areas. The papaya fruit has low calories and are plentiful in vitamins A and C and in minerals. A major problem in papaya production is a plant disease caused by the papaya ringspot virus (PRSV). The first PRSV-resistant GM papaya expressing a PRSV coat protein gene was developed by USA scientists in 1992. The first commercial GM papaya cultivars derived from the event was approved by the US government in 1997. Development of transgenic papayas has been focused on vaccine production and limited agricultural traits, including insect and pathogen resistance, long shelf life, and aluminum and herbicide tolerance. Approximately 17 countries, including the USA and China, produced transgenic papayas and/or commercialized them, which provoked studies on biosafety assessment and development of GM-detection technologies. For the biosafety assessment of potential effects on human health, effects of long-term feeding to model animals have been studied in terms of toxicity and allergenicity. Studies on environmental safety assessment include influence on soil-microbial biodiversity and transfer to soil bacteria of GM selection markers. Many countries, such as Korea, the European Union, and Japan, that have strict regulations for GM crops have serious concerns about unintended introduction of GM cultivars and food commodities using unauthorized GM crops. Transgene- and/or GM event-specific molecular markers and technologies for genomics-based detection of unauthorized GM papaya have been developed and have resulted in the robust detection of GM papayas.

키워드

참고문헌

  1. Abel PP, Nelson RS, De B, Hoffman N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738-743 https://doi.org/10.1126/science.3457472
  2. Abu Bakar UK, Pillai V, Hashim H, Daud HM (2005) Sharing Malaysian experience with the development of biotechnologyderived food crops. Food Nutr Bull 26:432-435
  3. Aradhya Mk, Manshardt RM, Wee F, Morden CW (1999) A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region. Genet Resour Crop Evol 46:579-586 https://doi.org/10.1023/A:1008786531609
  4. Aravind G, Bhowmik D, Duraivel S, Harish G (2013) Traditional and medicinal uses of Carica papaya. J Medi Plants Studi 1:7-15
  5. Australian Government (2008) The Biology of Carica papaya L. (papaya, papaw, paw paw). http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/content/papaya-4/$FILE/biology-papaya08.rtf
  6. Bau HJ, Cheng YH, Yu TA, Yang JS, Yeh SD (2003) Broadspectrum resistance to different geographic strains of papaya ringspot virus in coat protein gene transgenic papaya. Phytopathol 93:112-120 https://doi.org/10.1094/PHYTO.2003.93.1.112
  7. Bau HJ, Kung YJ, Raja JA, Chan SJ, Chen KC, Chen YK, Wu HW, Yeh SD (2008) Potential threat of a new pathotype of Papaya leaf distortion mosaic virus infecting transgenic papaya resistant to Papaya ringspot virus. Phytopathol 98:848-856 https://doi.org/10.1094/PHYTO-98-7-0848
  8. Biosafety Clearing-House (2018a) GM papaya in Japan (Decision Document).pdf. http://bch.cbd.int/database/record.shtml?documentid=103897
  9. Biosafety Clearing-House (2018b) 201400904 JPN report on GM papaya.pdf. http://bch.cbd.int/database/record.shtml?documentid=103897
  10. Biosafety Clearing-House (2018c) 171018 BHC GM papaya.pdf. http://bch.cbd.int/database/record.shtml?documentid=103897
  11. Cabrera-Ponce JL, Vegas-Garcia A, Herrera-Estrella L (1995) Herbicide resistant transgenic papaya plants produced by an efficient particle bombardment transformation method. Plant Cell Rep 15:1-7 https://doi.org/10.1007/BF01690242
  12. Cai W, Gonsalves C, Tennant P, Fermin G, Souza M, Sarindu N, Jan F, Zhu H, Gonsalves D (1999) A protocol for efficient transformation and regeneration of Carica papaya L. In Vitro Cell Dev Biol Plant 35:61-69
  13. Che Radziah CMZ, Nurul Shahnadz AH, Naziratul Ain AN, Zainal Z (2011) Genetic transformation of antisense ACC oxidase in Carica papaya L. cv. Sekaki via particle bombardment. Malays Appl Biol 40:39-45
  14. Chen G, Ye CM, Huang JC, Yu M, Li BJ (2001) Cloning of the papaya ringspot virus (PRSV) replicase gene and generation of the PRSV-resistant papayas through the introduction of the PRSV replicase gene. Plant Cell Rep 20:272-277 https://doi.org/10.1007/s002990000311
  15. Chen YN, Hwang WZ, Fang TJ, Cheng YH, Lin JY (2011) The impact of transgenic papaya (TPY10-4) fruit supplementation on immune responses in ovalbumin-sensitised mice. J Sci Food Agric 91:539-546 https://doi.org/10.1002/jsfa.4218
  16. Cheng YH, Yang JS, Yeh SD (1996) Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with caborundum. Plant Cell Rep 16:127-132 https://doi.org/10.1007/BF01890852
  17. Chiang CH, Wang JJ, Jan FJ, Yeh SD, Gonsalves D (2001) Comparative reactions of recombinant papaya ringspot viruses with chimeric coat protein (CP) genes and wild-type viruses on CP-transgenic papaya. J Gen Virol 82:2827-2836 https://doi.org/10.1099/0022-1317-82-11-2827
  18. Davis MJ, Ying Z (2004) Development of papaya breeding lines with transgenic resistance to Papaya ringspot virus. Plant Dis 88:352-358 https://doi.org/10.1094/PDIS.2004.88.4.352
  19. Delaunois B, Cordelier S, Conreux A, Clement C, Jeandet P (2009) Molecular engineering of resveratrol in plants. Plant Biotechnol J 7:2-12 https://doi.org/10.1111/j.1467-7652.2008.00377.x
  20. de la Fuente JM, Ramirez-Rodriguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566-1568 https://doi.org/10.1126/science.276.5318.1566
  21. Evans EA, Ballen FH (2012) An overview of global papaya production, trade, and consumption. EDIS#FE913. UF/IFAS Extension, Gainesville, FL.
  22. Fan MJ, Chen S, Kung YJ, Cheng YH, Bau HJ, Su TT, Yeh SD (2009) Transgene-specific and event-specific molecular markers for characterization of transgenic papaya lines resistant to Papaya ringspot virus. Transgenic Res 18:971-986 https://doi.org/10.1007/s11248-009-9287-7
  23. Fang J, Lin A, Qiu W, Cai H, Umar M, Chen R, Ming R (2016) Transcriptome profiling revealed stress-induced and disease resistance genes up-regulated in PRSV resistant transgenic papaya. Front Plant Sci 7:855
  24. FAOSTAT (2018) http://www.fao.org/faostat/en/#data
  25. Fermin GA, Castro LT, Tennant PF (2010) CP-transgenic and non-transgenic approaches for the control of papaya ringspot:current situation and challenges Transgenic Plant J 4:1-15
  26. Fermin G, Keith RC, Suzuki JY, Ferreira SA, Gaskill DA, Pitz KY, Manshardt RM, Gonsalves D, Tripathi S (2011) Allergenicity assessment of the papaya ringspot virus coat protein expressed in transgenic rainbow papaya. J Agric Food Chem 59:10006-10012 https://doi.org/10.1021/jf201194r
  27. FernAndez-Rodriguez T, Rubio L, Carballo O, Marys E (2008) Genetic variation of papaya ringspot virus in Venezuela. Arch Virol 153:343-349 https://doi.org/10.1007/s00705-007-1091-1
  28. Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189-194
  29. Fitch MM, Manshardt R (1990) Somatic embryogenesis and plant regeneration from immature zygotic embryos of papaya (Carica papaya L.). Plant Cell Rep 9:320-324
  30. Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10:1466-1472
  31. Fitch MM, Manshardt RM, Gonsalves D, Slightom JL (1993) Transgenic papaya plants from Agrobacterium-mediated transformation of somatic embryos. Plant Cell Rep 12:245-249
  32. Fitch MMM (2010) Papaya Ringspot Virus (PRSV) coat protein gene virus resistance in papaya: Update on progress worldwide. Transgenic Plant J 4:16-28
  33. Fragoso G, HernAndez M, Cervantes-Torres J, Ramirez-Aquino R, Chapula H, Villalobos N et al (2017) Transgenic papaya: a useful platform for oral vaccines. Planta 245:1037-1048 https://doi.org/10.1007/s00425-017-2658-z
  34. Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173-202 https://doi.org/10.1146/annurev.phyto.45.062806.094434
  35. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397-405 https://doi.org/10.1016/j.tibtech.2013.04.004
  36. Garrett A (1995) The Pollination biology of papaw (Carica papaya L.) in central Queensland. PhD thesis, Central Queensland University, Tockhampton
  37. Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415-437 https://doi.org/10.1146/annurev.phyto.36.1.415
  38. Gumtow R, Wu D, Uchida J, Tian M (2018) A Phytophthora palmivora extracellular cystatin-like protease inhibitor targets papain to contribute to virulence on papaya. Mol Plant Microbe Interact 31:363-373 https://doi.org/10.1094/MPMI-06-17-0131-FI
  39. Guo J, Yang L, Liu X, Zhang H, Qian B, Zhang D (2009a) Applicability of the chymopapain gene used as endogenous reference gene for transgenic huanong no. 1 papaya detection. J Agric Food Chem 57:6502-6509 https://doi.org/10.1021/jf900656t
  40. Guo J, Yang L, Liu X, Guan X, Jiang L, Zhang D (2009b) Characterization of the exogenous insert and development of event-specific PCR detection methods for genetically modified Huanong No. 1 papaya. J Agric Food Chem 57:7205-7212 https://doi.org/10.1021/jf901198x
  41. HernAndez M, Cabrera-Ponce JL, Fragoso G, Lopez-Casillas F, Guevara-Garcia A, Rosas G, Leon-Ramirez C, JuArez P, SAnchez-Garcia G, Cervantes J, Acero G, Toledo A, Cruz C, Bojalil R, Herrera-Estrella L, Sciutto E (2007) A new highly effective anticysticercosis vaccine expressed in transgenic papaya. Vaccine 25:4252-4260 https://doi.org/10.1016/j.vaccine.2007.02.080
  42. Hewajulige I, Dhekney SA (2016) Papayas, Encyclopedia of Food and Health Chapter 517.4. Elsevier Publishing Ltd, Oxford, UK, pp 209-212
  43. Hsieh YT, Pan TM (2006) Influence of planting papaya ringspot virus resistant transgenic papaya on soil microbial biodiversity. J Agric Food Chem 54:130-137 https://doi.org/10.1021/jf051999i
  44. Iwaki M, Arakawa Y (2006) Transformation of Acinetobacter sp. BD413 with DNA from commercially available genetically modified potato and papaya. Lett Appl Microbiol 43:215-221 https://doi.org/10.1111/j.1472-765X.2006.01924.x
  45. Jain RK, Sharma J, Sivakumar AS, Sharma PK, Byadgi AS, Verma AK, Varma A (2004) Variability in the coat protein gene of Papaya ringspot virus isolates from multiple locations in India. Arch Virol 149:2435-2442 https://doi.org/10.1007/s00705-004-0392-x
  46. James C (2016). Global Status of Commercialized Biotech/GM Crops: 2016. ISAAA Briefs No. 52. ISAAA: Ithaca, NY, USA
  47. Jia R, Zhao H, Huang J, Kong H, Zhang Y, Guo J, Huang Q, Guo Y, Wei Q, Zuo J, Zhu YJ, Peng M, Guo A (2017) Use of RNAi technology to develop a PRSV-resistant transgenic papaya. Sci Rep 7:12636 https://doi.org/10.1038/s41598-017-13049-0
  48. Jiang L, Maoka T, Komori S, Fukamachi H, Kato H, Ogawa K (2004) An efficient method for sonication assisted Agrobacterium-mediated transformation of coat protein (CP) coding genes into papaya (Carica papaya L.). Shi Yan Sheng Wu Xue Bao 37:189-198
  49. Kleter GA, Peijnenburg AA (2002) Screening of transgenic proteins expressed in transgenic food crops for the presence of short amino acid sequences identical to potential, IgE - binding linear epitopes of allergens. BMC Struct Biol 2:8 https://doi.org/10.1186/1472-6807-2-8
  50. Kim SA, Lee M, Yoo SJ, Kim JH, Lee H, Park KS, Jeong J, Kim HY (2010) Detection of GM papaya event 55-1 in fresh and processed papaya using duplex PCR. J Korean Soc Appl Biol Chem 53:237-242 https://doi.org/10.3839/jksabc.2010.037
  51. Korea Customs Service (KCS) (2018) Trade statistics for export/import. http//unipass.-customs.go.kr.38030/
  52. Kung YJ, Bau HJ, Wu YL, Huang CH, Chen TM, Yeh SD (2009) Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus. Phytopathol 99:1312-1320 https://doi.org/10.1094/PHYTO-99-11-1312
  53. Kung YJ, Yu TA, Huang CH, Wang HC, Wang SL, Yeh SD (2010) Generation of hermaphrodite transgenic papaya lines with virus resistance via transformation of somatic embryos derived from adventitious roots of in vitro shoots. Transgenic Res 19:621-635 https://doi.org/10.1007/s11248-009-9344-2
  54. Kung YJ, You BJ, Raja JA, Chen KC, Huang CH, Bau HJ, Yang CF, Huang CH, Chang CP, Yeh SD (2015) Nucleotide sequence-homology-independent breakdown of transgenic resistance by more virulent virus strains and a potential solution. Sci Rep 5:9804 https://doi.org/10.1038/srep09804
  55. Laurena AC, Magdalita PM, Hidalgo MSP, Villegas VN, Mendoza EMT and Botella JR (2002) Cloning and molecular characterization of ripening-related ACC synthase from papaya fruit (Carica papaya L.). Acta Hort 575:163-169
  56. Lin HT, Yen GC, Huang TT, Chan LF, Cheng YH, Wu JH, Yeh SD, Wang SY, Liao JW (2013) Toxicity assessment of transgenic papaya ringspot virus of 823-2210 line papaya fruits. J Agric Food Chem 61:1585-1596 https://doi.org/10.1021/jf305036x
  57. Lin HT, Yen GC, Lee WC, Tsai YT, Wu JH, Yeh SD, Cheng YH, Chang SC, Liao JW (2015) Repeated dose 90-day feeding study of whole fruits of genetically modified papaya resistant to Papaya ringspot virus in rats. J Agric Food Chem 63:1286-1292 https://doi.org/10.1021/jf5048404
  58. Lines RE, Persely D, Dale JL, Drew R, Bateson MF (2002) Genetically engineered immunity to Papaya ringspot virus in Australian papaya cultivars. Mol Breed 10:119-129 https://doi.org/10.1023/A:1020381110181
  59. Litz RE, Conover RA (1982) In vitro somatic embryogenesis and plant regeneration from Carica papaya L. ovular callus. Plant Sci Lett 26:153-158 https://doi.org/10.1016/0304-4211(82)90086-4
  60. Lo CC, Chen SC, Yang JZ (2007) Use of real-time polymerase chain reaction (PCR) and transformation assay to monitor the persistence and bioavailability of transgenic genes released from genetically modified papaya expressing nptII and PRSV genes in the soil. J Agric Food Chem 55:7534-7440 https://doi.org/10.1021/jf071574r
  61. Lopez-Gomez R, Cabrera-Ponce JL, Saucedo-Arias LJ, Carreto-Montoya L, Villanueva-Arce R, Diaz-Perez JC, Gomez-Lim MA, Herrera-Estrella L (2009) Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Res 18:89-97 https://doi.org/10.1007/s11248-008-9197-0
  62. Magdalita PM, Laurena AC, Yabut-Perez BM, Tecson-Mendoza EM and Botella JR (2002) Progress in the development of transgenic papaya: transformation of Solo papaya using ACC synthase antisense construct. Acta Hort 575:171-176.
  63. Magdalita PM, Laurena AC, Yabut-Perez BM, Zaporteza MM, Tecson-Mendoza EM, Villegas VN, Botella JR (2003) Towards transformation, regeneration and screening of papaya containing antisense ACC synthase gene. In: Plant Biotechnology 2002 and Beyond, Vasil IK (ed), Netherlands, Kluwer Academic Publishers, pp 323-327
  64. Mangrauthia SK, Singh P, Praveen S (2010) Genomics of helper component proteinase reveals effective strategy for papaya ringspot virus resistance. Mol Biotechnol 44:22-29 https://doi.org/10.1007/s12033-009-9205-5
  65. Mahon RE, Bateson MF, Chamberllain DA, Higgins CM, Drew RA, Dal JL (1996) Transformation of an Australian variety of Carica papaya using microprojectile bombardment. Funct Plant Biol 23:679-685 https://doi.org/10.1071/PP9960679
  66. McCafferty HR, Moore PH, Zhu YJ (2006) Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgenic Res 15:337-347 https://doi.org/10.1007/s11248-006-0005-4
  67. Meneguetti BT, Machado LD, Oshiro KGN, Nogueira ML, Carvalho CME, Franco OL (2017) Antimicrobial peptides from fruits and their potential use as biotechnological tools-A review and outlook. Front Microbiol 7:2136
  68. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991-996 https://doi.org/10.1038/nature06856
  69. Misas-Villamil JC, van der Hoorn RAL, Doehlemann G (2016) Papain-like cysteine proteases as hubs in plant immunity. New Phytol 212:902-907 https://doi.org/10.1111/nph.14117
  70. Morton JF (1987) Papaya Carica papaya L. In: Fruits of Warm Climates. Creative Resources Inc., Winterville, N.C. http://www.hort.purdue.edu/newcrop/morton/papaya_ars.html, pp 336-346
  71. Nageswara-Rao M, Kwit C, Agarwal S, Patton MT, Skeen JA, Yuan JS, Manshardt RM, Stewart CN Jr (2013) Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.). BMC Biotechnol 13:69 https://doi.org/10.1186/1472-6750-13-69
  72. Nakamura K, Akiyama H, Ohmori K, Takahashi Y, Takabatake R, Kitta K, Nakazawa H, Kondo K, Teshima R (2011) Identification and detection method for genetically modified papaya resistant to papaya ringspot virus YK strain. Biol Pharm Bull 34:1648-1651 https://doi.org/10.1248/bpb.34.1648
  73. Nakamura K, Akiyama H, Takahashi Y, Kobayashi T, Noguchi A, Ohmori K, Kasahara M, Kitta K, Nakazawa H, Kondo K, Teshima R (2013) Application of a qualitative and quantitative real-time polymerase chain reaction method for detecting genetically modified papaya line 55-1 in papaya products. Food Chem 136:895-901 https://doi.org/10.1016/j.foodchem.2012.08.088
  74. Nakamura K, Kondo K, Kobayashi T, Noguchi A, Ohmori K, Takabatake R, Kitta K, Akiyama H, Teshima R, Nishimaki-Mogami T (2014) Identification and detection of genetically modified papaya resistant to papaya ringspot virus strains in Thailand. Biol Pharm Bull 37:1-5 https://doi.org/10.1248/bpb.b13-00721
  75. Nakamura K, Kondo K, Akiyama H, Ishigaki T, Noguchi A, Katsumata H, Takasaki K, Futo S, Sakata K, Fukuda N, Mano J, Kitta K, Tanaka H, Akashi R, Nishimaki-Mogami T (2016) Whole genome sequence analysis of unidentified genetically modified papaya for development of a specific detection method. Food Chem 205:272-279 https://doi.org/10.1016/j.foodchem.2016.02.157
  76. Nakasone HY, Paull RE (1998) Tropical Fruits. CAB International, Wallingford Pang SZ, Sanford JC (1988) Agrobacterium-mediated gene transfer in papaya. J Amer Soc Horti Sci 113:287-291
  77. Powell M, Wheatley AO, Omoruyi F, Asemota HN, Williams NP, Tennant PF (2010) Comparative effects of dietary administered transgenic and conventional papaya on selected intestinal parameters in rat models. Transgenic Res 19:511-518 https://doi.org/10.1007/s11248-009-9317-5
  78. Purcifull D, Edwardson J, Hiebert E, Gonsalves D (1984) Papaya ringspot virus. CMI/AAB Description of Plant Viruses, No. 292, CAB International, Wallingford, UK
  79. Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed (2013)
  80. Retuta AMO, Magdalita PM, Aspuria ET, Espino RRC (2012) Evaluation of selected transgenic papaya (Carica papaya L.) lines for inheritance of resistance to papaya ringspot virus and horticultural traits. Plant Biotechnol 29:339-349 https://doi.org/10.5511/plantbiotechnology.12.0215b
  81. Roberts M, Minott DA, Pinnock S, Tennant PF, Jackson JC (2014) Physicochemical and biochemical characterization of transgenic papaya modified for protection against Papaya ringspot virus. J Sci Food Agric 94:1034-1038 https://doi.org/10.1002/jsfa.6374
  82. Robinson KE, Worrall EA, Mitter N (2014) Double stranded RNA expression and its topical application for non-transgenic resistance to plant viruses. J Plant Biochem Biotechnol 23:231-237 https://doi.org/10.1007/s13562-014-0260-z
  83. Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance. Deriving resistance genes from the parasites own genome. J Theor Biol 113:395-405 https://doi.org/10.1016/S0022-5193(85)80234-4
  84. Sekeli R, Abdullah JO, Namasivayam P, Muda P, Abu Bakar UK, Yeong WC, Pillai V (2014) RNA interference of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1 and ACO2) genes expression prolongs the shelf life of Eksotika (Carica papaya L.) papaya fruit. Molecules 19:8350-8362 https://doi.org/10.3390/molecules19068350
  85. Shen W, Yang G, Chen Y, Yan P, Tuo D, Li X, Zhou P (2014a) Resistance of non-transgenic papaya plants to papaya ringspot virus (PRSV) mediated by intron-containing hairpin dsRNAs expressed in bacteria. Acta Virol 58:261-266 https://doi.org/10.4149/av_2014_03_261
  86. Shen W, Tuo D, Yan P, Li X, Zhou P (2014b) Detection of Papaya leaf distortion mosaic virus by reverse-transcription loop-mediated isothermal amplification. J Virol Methods 195:174-179 https://doi.org/10.1016/j.jviromet.2013.09.011
  87. Shen W, Tuo D, Yan P, Yang Y, Li X, Zhou P (2014c) Reverse transcription loop-mediated isothermal amplification assay for rapid detection of Papaya ringspot virus. J Virol Methods 204:93-100 https://doi.org/10.1016/j.jviromet.2014.04.012
  88. Sheu C, Wu CY, Chen SC, Lo CC (2008) Extraction of DNA from soil for analysis of bacterial diversity in transgenic and nontransgenic papaya sites. J Agric Food Chem 56:11969-11975 https://doi.org/10.1021/jf8025666
  89. Souza Jr MT, Venturoli MF, Coelho MCF, Rech-Filho EL (2001) Analysis of marker gene/selective agent of transgenic papaya (Carica papaya L.) somatic embryos. Braz J Plant Physiol 13:366-373
  90. Souza Jr MT, Nickel O, Gonsalves D (2005) Development of virus resistant transgenic papayas expressing the coat protein gene from a Brazilian isolate of papaya ringspot virus. Fitopatol Bras 30:357-365 https://doi.org/10.1590/S0100-41582005000400004
  91. Standards for the Safety Assessment of GM Foods (Seed Plants) (2004), the Food Safety Commission of Japan (January 29, 2004)
  92. Tecson-Mendoza EM, C Laurena A, Botella JR (2008) Recent advances in the development of transgenic papaya technology. Biotechnol Annu Rev 14:423-462
  93. Teixeira da Silva JA, Rashid Z, Nhut DT, Sivakumar D, Gera A, Souza Jr MT, Tennant PF (2007) Papaya (Carica papaya L.) biology and biotechnology. Tree Forestry Sci Biotech 1:47-73
  94. Tenllado F, Diaz-Ruiz JR (2001) Double-stranded RNA-mediated interference with plant virus infection. J Virol 75:12288-12297 https://doi.org/10.1128/JVI.75.24.12288-12297.2001
  95. Tengs T, Zhang H, Holst-Jensen A, Bohlin J, Butenko MA, Kristoffersen AB, Sorteberg HG, Berdal KG (2009) Characterization of unknown genetic modifications using high throughput sequencing and computational subtraction. BMC Biotechnol 9:87 https://doi.org/10.1186/1472-6750-9-87
  96. Tennant PF, Fermin G, Fitch MM, Manshardt RM, Slightom JL, Gonslaves D (2001) Papaya ringspot virus resistance of transgenic ‘Rainbow’ and ‘SunUp’ is affected by gene dosage, plant development, and coat protein homology. Eur J Plant Pathol 107:645-653 https://doi.org/10.1023/A:1017936226557
  97. Tennant PF, Ahmad MH, Gonsalves F (2002) Transformation of Carica papaya L. with virus coat protein genes for studies on resistance to Papaya ringspot virus from Jamaica. Trop Agric 79:1005-113
  98. Tennant PF, Fermin GA, Roye RE (2007) Viruses infecting papaya (Carica papaya L.): etiology, pathogenesis, and molecular biology. Plant Viruses 1:178-188
  99. Tomas JE, Dodman RL (1993) The first record of papaya ringspot virus-type P from Australia. Australas Plant Pathol 22:1-7 https://doi.org/10.1071/APP9930001
  100. Wakui C, Akiyama H, Watanabe T, Fitch MM, Uchikawa S, Ki M, Takahashi K, Chiba R, Fujii A, Hino A, Maitani T (2004) A histochemical method using a substrate of beta-glucuronidase for detection of genetically modified papaya. Shokuhin Eiseigaku Zasshi 45:19-24 https://doi.org/10.3358/shokueishi.45.19
  101. Warnert JE (2004) Conventionally bred papaya still possible, even in California. Califor Agricul 58:74 https://doi.org/10.3733/ca.v058n02p74
  102. Wei J, Li F, Guo J, Li X, Xu J, Wu G, Zhang D, Yang L (2013) Collaborative ring trial of the papaya endogenous reference gene and its polymerase chain reaction assays for genetically modified organism analysis. J Agric Food Chem 61:11363-11370 https://doi.org/10.1021/jf403338a
  103. Wei J, Le H, Pan A, Xu J, Li F, Li X, Quan S, Guo J, Yang L (2016) Collaborative trial for the validation of event-specific PCR detection methods of genetically modified papaya Huanong No. 1. Food Chem 194:20-25 https://doi.org/10.1016/j.foodchem.2015.07.010
  104. Woo JW, Kim J, Kwon SI, CorvalAn C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162-1164 https://doi.org/10.1038/nbt.3389
  105. Xu W, Zhai Z, Huang K, Zhang N, Yuan Y, Shang Y, Luo Y (2012) A novel universal primer-multiplex-PCR method with sequencing gel electrophoresis. PLoS ONE 7:e22900 https://doi.org/10.1371/journal.pone.0022900
  106. Yahaya A, Ali M, Idris A (2017) Antibacterial activity and phytochemical screening of Carica papaya on some enteric bacterial isolates of public health importance. Greener J Bilologi Sci 7:1-7 https://doi.org/10.15580/GJBS.2017.1.122916224
  107. Zhang GL, Zhou Z, Guo AP, Shen WT and Li XY (2003) An initial study of transgenic Carica papaya used as a kind of vaccine for anti-tuberculosis. Acta Botanica Yunnanica 2:223-229
  108. Zhu YJ, Agbayani R, Moore PH (2004a) Green fluorescent protein as a visual selection marker for papaya (Carica papaya L.) transformation. Plant Cell Rep 22:660-667 https://doi.org/10.1007/s00299-004-0755-5
  109. Zhu YJ, Agbayani R, Jackson MC, Tang CS, Moore PH (2004b) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220:241-250 https://doi.org/10.1007/s00425-004-1343-1
  110. Zhu YJ, Agbayani R, McCafferty H, Albert HH, Moore PH (2005) Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Rep 24:426-432 https://doi.org/10.1007/s00299-005-0956-6
  111. Zhu YJ, Fitch MM, Moore PH (2006) Papaya (Carica papaya L.). Methods Mol Biol 344:209-217
  112. Zhu YJ, Agbayani R, Moore PH (2007) Ectopic expression of Dahlia merckii defensin DmAMP1 improves papaya resistance to Phytophthora palmivora by reducing pathogen vigor. Planta 226:87-97 https://doi.org/10.1007/s00425-006-0471-1