DOI QR코드

DOI QR Code

Ocean tide-induced secular variation in the Earth-Moon dynamics

  • Uchida, Natsuki (Department of Environmental Sciences, University of Yamanashi) ;
  • Shima, Hiroyuki (Department of Environmental Sciences, University of Yamanashi)
  • Received : 2018.05.25
  • Accepted : 2018.07.20
  • Published : 2018.10.25

Abstract

We theoretically consider a possible influence of periodic oceanic tides on non-periodic changes in the dynamics of the Earth and Moon over a long time scale. A particular emphasis will be placed on the contribution from rotating tidal waves, which rotate along the inner edge of an oceanic basin surrounded by topographic boundary. We formulate the angular momentum and the mechanical energy of the rotating tidal wave in terms of celestial parameters with regard to the Earth and Moon. The obtained formula are used to discuss how the energy dissipation in the rotating tidal wave should be relevant to the secular variation in the Earth's spin rotation and the Earth-Moon distance. We also discuss the applicability of the formula to general oceanic binary planets subject to tidal coupling.

Keywords

Acknowledgement

Supported by : JSPS KAKENHI

References

  1. Burns, J.A. and Matthews, M.S. (1986), Satellites, The University of Arizona Press, U.S.A.
  2. Cadek, O., Tobie, G., Van Hoolst, T., Masse, M., Choblet, G., Lefevre, A., Mitri, G., Baland, R.M., Behounkova, M., Bourgeois, O. and Trinh, A. (2016), "Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data", Geophys. Res. Lett., 43(11), 5653-5660. https://doi.org/10.1002/2016GL068634
  3. Carr, M.H., Belton, M.J., Chapman, C.R., Davies, M.E., Geissler, P., Greenberg, R., McEwen, A.S., Tufts, B.R., Greeley, R., Sullivan, R., Head, J.W., Pappalardo, R.T., Klaasen, K.P., Johnson, T.V., Kaufman, J., Senske, D., Moore, J., Neukum, G., Schubert, G., Burns, J.A., Thomas, P. and Veverka, J. (1998), "Evidence for a subsurface ocean on Europa", Nature, 391(6665), 363-365. https://doi.org/10.1038/34857
  4. Egbert, G.D. and Ray, R.D. (2000), "Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data", Nature, 405(6788), 775-778. https://doi.org/10.1038/35015531
  5. Folonier, H.A. and Ferraz-Mello, S. (2017), "Tidal synchronization of an anelastic multi-layered body: Titan's synchronous rotation", Celest. Mech. Dyn. Astr., 129(4), 359-396. https://doi.org/10.1007/s10569-017-9777-5
  6. Ide, S., Yabe, S. and Tanaka, Y. (2016), "Earthquake potential revealed by tidal influence on earthquake sizefrequency statistics", Nat. Geosci., 9(11), 834-837. https://doi.org/10.1038/ngeo2796
  7. Jeffreys, H. (1920), "Tidal friction in shallow seas", Phil. Trans. R. Soc. Lond. A, 221(582-593), 239-264.
  8. Loper, D.E. (2017), Geophysical Waves and Flows: Theory and Applications in the Atmosphere, Hydrosphere and Geosphere, Cambridge University Press, Cambridge, United Kingdom.
  9. Mayer, H.C. and Krechetnikov, R. (2012), "Walking with coffee: Why does it spill?", Phys. Rev. E, 85(4), 046117.
  10. McCarthy, C. and Cooper, R.F. (2016), "Tidal dissipation in creeping ice and the thermal evolution of Europa", Earth Planet. Sci. Lett., 443, 185-194. https://doi.org/10.1016/j.epsl.2016.03.006
  11. Murphy Jr., T.W., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., Johnson, N.H., McMillan, R.J., Stubbs, C. W. and Swanson, H.E. (2012), "APOLLO: Millimeter lunar laser ranging", Class. Quantum Grav., 29(18), 184005. https://doi.org/10.1088/0264-9381/29/18/184005
  12. Murphy, T.W. (2013), "Lunar laser ranging: The millimeter challenge", Rep. Prog. Phys., 76(7), 076901. https://doi.org/10.1088/0034-4885/76/7/076901
  13. Murray, C.D. and Dermott, S.F. (2000), Solar System Dynamics, Cambridge University Press, Cambridge, United Kingdom.
  14. Nimmo, F. and Pappalardo, R.T. (2016), "Ocean worlds in the outer solar system", J. Geophys. Res. Planets, 121(8), 1378-1399. https://doi.org/10.1002/2016JE005081
  15. Palmer, J.D. (1973), "Tidal rhythms: The clock control of the rhythmic physiology of marine organisms", Biol. Rev., 48(3), 377-418. https://doi.org/10.1111/j.1469-185X.1973.tb01008.x
  16. Pinet, P. R. (2014), Invitation to Oceanography, 7th Ed., Jones and Bartlett Learning, U.S.A.
  17. Ray, R.D. (1999), "A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2", NASA/TM-1999-209478; NASA Goddard Space Flight Center, Greenbelt, MD, U.S.A.
  18. Roberts, J.H. and Nimmo, F. (2008), "Tidal heating and the long-term stability of a subsurface ocean on Enceladus", Icarus, 194(2), 675-689. https://doi.org/10.1016/j.icarus.2007.11.010
  19. Samain, E., Mangin, J.F., Veillet, C., Torre, J.M., Fridelance, P., Chabaudie, J.E., Feraudy, D., Glentzlin, M., Pham Van, J., Furia, M., Journet, A. and Vigouroux, G. (1998), "Millimetric lunar laser ranging at OCA (Observatoire de la Cote d'Azur)", Astron. Astrophys. Suppl. Ser., 130(2), 235-244. https://doi.org/10.1051/aas:1998227
  20. Souchay, J., Mathis, S. and Tokieda, T. (2013), Tides in Astronomy and Astrophysics, Springer-Verlag, Germany.
  21. Stacey, F.D. and Davis, P.M. (2008), Physics of the Earth, 4th Ed., Cambridge University Press, Cambridge, United Kingdom.
  22. Taylor, G.I. (1919), "Tidal friction in the Irish Sea", Phil. Trans. R. Soc. Lond. A, 220(571-581), 1-33.
  23. Webb, D.J. (1982), "Tides and the evolution of the Earth-Moon system", Geophys. J.R. Astr. Soc., 70(1), 261-271.