Crystal structure of unphosphorylated Spo0F from Paenisporosarcina sp. TG-14, a psychrophilic bacterium isolated from an Antarctic glacier

  • Lee, Chang Woo (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Park, Sun-Ha (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Jeong, Chang Sook (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Lee, Chang Sup (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University) ;
  • Hong, Jong Wook (Department of Bionanotechnology, Graduate School, Hanyang University) ;
  • Park, Hyun Ho (College of Pharmacy, Chung-Ang University) ;
  • Park, Hyun (Unit of Polar Genomics, Korea Polar Research Institute) ;
  • Park, HaJeung (X-Ray Core, TRI, The Scripps Research Institute) ;
  • Lee, Jun Hyuck (Unit of Polar Genomics, Korea Polar Research Institute)
  • Received : 2018.11.01
  • Accepted : 2018.12.15
  • Published : 2018.12.31

Abstract

Spo0F is a response regulator that modulates sporulation, undergoes phosphorylation for phosphorelay signal transduction, and interacts with various regulatory proteins; however, the mechanisms through which phosphorylation induces structural changes and regulates interactions with binding partners remain unclear. Here, we determined the unphosphorylated crystal structure of Spo0F from the psychrophilic bacterium Paenisporosarcina sp. TG-14 (PaSpo0F) and established a phosphorylation-state structural model. We found that PaSpo0F underwent structural changes (Lys54 and Lys102) by phosphorylation and generated new interactions (Lys102/Gln10 and Lys54/Glu84) to stabilize the ${\beta}4/{\alpha}4$ and ${\beta}1/{\alpha}1$ loop structures, which are important target-protein binding sites. Analysis of Bacillus subtilis Spo0 variants revealed movement by BsSpo0F Thr82 and Tyr84 residues following interaction with BsSpo0B, providing insight into the movement of corresponding residues in PaSpo0F (Thr80 and Tyr82), with further analysis of BsSpo0F/BsRapH interaction revealing alterations in the ${\beta}4/{\alpha}4$ loop region. These results suggest that phosphorylation-induced structural rearrangement might be essential for PaSpo0F activation and expand the understanding of Spo0F-specific activation mechanisms during sporulation.

Keywords

Acknowledgement

Supported by : Korea Polar Research Institute (KOPRI), National Research Foundation of Korea (NRF)

References

  1. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., McCoy, A.J., Moriarty, N.W., Oeffner, R., Read, R.J., Richardson, D.C., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221. https://doi.org/10.1107/S0907444909052925
  2. Al-Hinai, M.A., Jones, S.W., and Papoutsakis, E.T. (2015). The Clostridium sporulation programs: diversity and preservation of endospore differentiation. Microbiol Mol Biol Rev 79, 19-37. https://doi.org/10.1128/MMBR.00025-14
  3. Baikalov, I., Schroder, I., Kaczor-Grzeskowiak, M., Grzeskowiak, K., Gunsalus, R.P., and Dickerson, R.E. (1996). Structure of the Escherichia coli response regulator NarL. Biochemistry 35, 11053-11061. https://doi.org/10.1021/bi960919o
  4. Bongiorni, C., Stoessel, R., Shoemaker, D., and Perego, M. (2006). Rap phosphatase of virulence plasmid pXO1 inhibits Bacillus anthracis sporulation. J Bacteriol 188, 487-498. https://doi.org/10.1128/JB.188.2.487-498.2006
  5. Brunsing, R.L., La Clair, C., Tang, S., Chiang, C., Hancock, L.E., Perego, M., and Hoch, J.A. (2005). Characterization of sporulation histidine kinases of Bacillus anthracis. J Bacteriol 187, 6972-6981. https://doi.org/10.1128/JB.187.20.6972-6981.2005
  6. Burbulys, D., Trach, K.A., and Hoch, J.A. (1991). Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64, 545-552. https://doi.org/10.1016/0092-8674(91)90238-T
  7. Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., and Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66, 12-21. https://doi.org/10.1107/S0907444909042073
  8. DeLano, W.L. (2002). The PyMOL molecular graphics system. Available at: www.pymol.org.
  9. Desnous, C., Guillaume, D., and Clivio, P. (2009). Spore photoproduct: a key to bacterial eternal life. Chem Rev 110, 1213-1232.
  10. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132. https://doi.org/10.1107/S0907444904019158
  11. Feher, V.A., and Cavanagh, J. (1999). Millisecond-timescale motions contribute to the function of the bacterial response regulator protein Spo0F. Nature 400, 289. https://doi.org/10.1038/22357
  12. Feher, V.A., Zapf, J.W., Hoch, J.A., Whiteley, J.M., McIntosh, L.P., Rance, M., Skelton, N.J., Dahlquist, F.W., and Cavanagh, J. (1997). High-resolution NMR structure and backbone dynamics of the Bacillus subtilis response regulator, Spo0F: implications for phosphorylation and molecular recognition. Biochemistry 36, 10015-10025. https://doi.org/10.1021/bi970816l
  13. Fernandez, I., Otero, L.H., Klinke, S., del Carmen Carrica, M., and Goldbaum, F.A. (2015). Snapshots of conformational changes shed light into the NtrX receiver domain signal transduction mechanism. J Mol Biol 427, 3258-3272. https://doi.org/10.1016/j.jmb.2015.06.010
  14. Galperin, M.Y. (2006). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188, 4169-4182. https://doi.org/10.1128/JB.01887-05
  15. Gardino, A.K., Volkman, B.F., Cho, H.S., Lee, S.-Y., Wemmer, D.E., and Kern, D. (2003). The NMR solution structure of BeF3--activated Spo0F reveals the conformational switch in a phosphorelay system. J Mol Biol 331, 245-254. https://doi.org/10.1016/S0022-2836(03)00733-2
  16. Hoch, J.A., and Varughese, K. (2001). Keeping signals straight in phosphorelay signal transduction. J Bacteriol 183, 4941-4949. https://doi.org/10.1128/JB.183.17.4941-4949.2001
  17. Holm, L., and Sander, C. (1995). Dali: a network tool for protein structure comparison. Trends Biochem Sci 20, 478-480. https://doi.org/10.1016/S0968-0004(00)89105-7
  18. Ireton, K., Rudner, D.Z., Siranosian, K.J., Grossman, A.D. (1993). Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev 7, 283-294. https://doi.org/10.1101/gad.7.2.283
  19. Ishikawa, S., Core, L.J., and Perego, M. (2002). Biochemical characterization of aspartyl-phosphate phosphatase interaction with a phosphorylated response regulator and its inhibition by a pentapeptide.
  20. Jiang, M., Shao, W., Perego, M., and Hoch, J. (2000). Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol 38, 535-542. https://doi.org/10.1046/j.1365-2958.2000.02148.x
  21. Jiang, M., Tzeng, Y.L., Feher, V.A., Perego, M., and Hoch, J. (1999). Alanine mutants of the Spo0F response regulator modifying specificity for sensor kinases in sporulation initiation. Mol Microbiol 33, 389-395. https://doi.org/10.1046/j.1365-2958.1999.01481.x
  22. Koh, H.Y., Lee, S.G., Lee, J.H., Doyle, S., Christner, B.C., and Kim, H.J. (2012). Draft genome sequence of Paenisporosarcina sp. strain TG-14, a psychrophilic bacterium isolated from sediment-laden stratified basal ice from Taylor Glacier, McMurdo Dry Valleys, Antarctica. J Bacteriol 194, 6656-6657. https://doi.org/10.1128/JB.01795-12
  23. LeDeaux, J.R., and Grossman, A.D. (1995). Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J Bacteriol 177, 166-175. https://doi.org/10.1128/jb.177.1.166-175.1995
  24. LeDeaux, J.R., Yu, N., and Grossman, A.D. (1995). Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis. J Bacteriol 177, 861-863. https://doi.org/10.1128/jb.177.3.861-863.1995
  25. Lee, J., Tomchick, D.R., Brautigam, C.A., Machius, M., Kort, R., Hellingwerf, K.J., and Gardner, K.H. (2008). Changes at the KinA PAS-A dimerization interface influence histidine kinase function. Biochemistry 47, 4051-4064. https://doi.org/10.1021/bi7021156
  26. Lee, S.-Y., De La Torre, A., Yan, D., Kustu, S., Nixon, B.T., and Wemmer, D.E. (2003). Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev 17, 2552-2563. https://doi.org/10.1101/gad.1125603
  27. Lewis, R.J., Brannigan, J.A., Muchova, K.n., Barak, I., and Wilkinson, A.J. (1999). Phosphorylated aspartate in the structure of a response regulator protein1. J Mol Biol 294, 9-15. https://doi.org/10.1006/jmbi.1999.3261
  28. Lewis, R.J., Scott, D.J., Brannigan, J.A., Ladds, J.C., Cervin, M.A., Spiegelman, G.B., Hoggett, J.G., Barak, I., and Wilkinson, A.J. (2002). Dimer formation and transcription activation in the sporulation response regulator Spo0A1. J Mol Biol 316, 235-245. https://doi.org/10.1006/jmbi.2001.5331
  29. Madhusudan, Zapf, J., Hoch, J.A., Whiteley, J.M., Xuong, N.H., and Varughese, K.I. (1997). A response regulatory protein with the site of phosphorylation blocked by an arginine interaction: crystal structure of Spo0F from Bacillus subtilis. Biochemistry 36, 12739-12745. https://doi.org/10.1021/bi971276v
  30. Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33, 491-497. https://doi.org/10.1016/0022-2836(68)90205-2
  31. Muller-Dieckmann, H.-J., Grantz, A.A., and Kim, S.-H. (1999). The structure of the signal receiver domain of the Arabidopsis thaliana ethylene receptor ETR1. Structure 7, 1547-1556. https://doi.org/10.1016/S0969-2126(00)88345-8
  32. Muchova, K., Lewis, R., Perecko, D., Brannigan, J., Ladds, J., Leech, A., Wilkinson, A., and Barak, I. (2004). Dimer-induced signal propagation in Spo0A. Mol Microbiol 53, 829-842. https://doi.org/10.1111/j.1365-2958.2004.04171.x
  33. Mukhopadhyay, D., Sen, U., Zapf, J., and Varughese, K.I. (2004). Metals in the sporulation phosphorelay: manganese binding by the response regulator Spo0F. Acta Crystallogr D Biol Crystallogr 60, 638-645.
  34. Murshudov, G.N., Skubak, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67, 355-367. https://doi.org/10.1107/S0907444911001314
  35. Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., and Setlow, P. (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64, 548-572. https://doi.org/10.1128/MMBR.64.3.548-572.2000
  36. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. In: Methods in Rnzymology (Elsevier), pp. 307-326.
  37. Parashar, V., Mirouze, N., Dubnau, D.A., and Neiditch, M.B. (2011). Structural basis of response regulator dephosphorylation by Rap phosphatases. PLoS Biol 9, e1000589. https://doi.org/10.1371/journal.pbio.1000589
  38. Perego, M. (2001). A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Mol Microbiol 42, 133-143.
  39. Roszak, D., and Colwell, R. (1987). Survival strategies of bacteria in the natural environment. Microbiol Rev 51, 365. https://doi.org/10.1128/MMBR.51.3.365-379.1987
  40. Stephenson, K., and Hoch, J.A. (2002). Evolution of signalling in the sporulation phosphorelay. Mol Microbiol 46, 297-304. https://doi.org/10.1046/j.1365-2958.2002.03186.x
  41. Stephenson, K., and Hoch, J.A. (2001). PAS-A domain of phosphorelay sensor kinase A: a catalytic ATP-binding domain involved in the initiation of development in Bacillus subtilis. Proc Natl Acad Sci U S A 98, 15251-15256. https://doi.org/10.1073/pnas.251408398
  42. Thomas, S.A., Brewster, J.A., and Bourret, R.B. (2008). Two variable active site residues modulate response regulator phosphoryl group stability. Mol Microbiol 69, 453-465. https://doi.org/10.1111/j.1365-2958.2008.06296.x
  43. Tzeng, Y.-L., Zhou, X.Z., and Hoch, J.A. (1998). Phosphorylation of the Spo0B response regulator phosphotransferase of the phosphorelay initiating development in Bacillus subtilis. J Biol Chem 273, 23849-23855. https://doi.org/10.1074/jbc.273.37.23849
  44. Usher, K.C., De La Cruz, A.F.A., Dahlquist, F.W., James Remington, S., Swanson, R.V., and Simon, M.I. (1998). Crystal structures of CheY from Thermotoga maritima do not support conventional explanations for the structural basis of enhanced thermostability. Protein Sci 7, 403-412.
  45. Vagin, A., and Teplyakov, A. (1997). MOLREP: an automated program for molecular replacement. J Appl Cryst 30, 1022-1025. https://doi.org/10.1107/S0021889897006766
  46. Varughese, K.I., Tsigelny, I., and Zhao, H. (2006). The crystal structure of beryllofluoride Spo0F in complex with the phosphotransferase Spo0B represents a phosphotransfer pretransition state. J Bacteriol 188, 4970-4977. https://doi.org/10.1128/JB.00160-06
  47. Volz, K. (1993). Structural conservation in the CheY superfamily. Biochemistry 32, 11741-11753. https://doi.org/10.1021/bi00095a001
  48. Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., McCoy, A., McNicholas, S.J., Murshudov, G.N., Pannu, N.S., Potterton, E.A., Powell, H.R., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235-242. https://doi.org/10.1107/S0907444910045749
  49. Zapf, J., Sen, U., Hoch, J.A., and Varughese, K.I. (2000). A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Structure 8, 851-862. https://doi.org/10.1016/S0969-2126(00)00174-X
  50. Zapf, J., Whiteley, J.M., Hoch, J.A., Xuong, N.H., and Varughese, K.I. (1996). Crystal structure of a phosphatase-resistant mutant of sporulation response regulator Spo0F from Bacillus subtilis. Structure 4, 679-690. https://doi.org/10.1016/S0969-2126(96)00074-3