참고문헌
- Camps, M., Nichols, A., Gillieron, C., Antonsson, B., Muda, M., Chabert, C., Boschert, U., and Arkinstall, S. (1998). Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280, 1262-1265. https://doi.org/10.1126/science.280.5367.1262
- Chen, P., Hutter, D., Yang, X., Gorospe, M., Davis, R.J., and Liu, Y. (2001). Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MKP-2 and their ability to catalytically activate the phosphatase. J Biol Chem 276, 29440-29449. https://doi.org/10.1074/jbc.M103463200
- Dechert, U., Adam, M., Harder, K.W., Clark-Lewis, I., and Jirik, F. (1994). Characterization of protein tyrosine phosphatase SH-PTP2. Study of phosphopeptide substrates and possible regulatory role of SH2 domains. J Biol Chem 269, 5602-5611.
- Farooq, A., Chaturvedi, G., Mujtaba, S., Plotnikova, O., Zeng, L., Dhalluin, C., Ashton, R., and Zhou, M.M. (2001). Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2. Mol Cell 7, 387-399. https://doi.org/10.1016/S1097-2765(01)00186-1
- Farooq, A., and Zhou, M.M. (2004). Structure and regulation of MAPK phosphatases. Cell Signal 16, 769-779. https://doi.org/10.1016/j.cellsig.2003.12.008
- Fjeld, C.C., Rice, A.E., Kim, Y., Gee, K.R., and Denu, J.M. (2000). Mechanistic basis for catalytic activation of mitogen-activated protein kinase phosphatase 3 by extracellular signal-regulated kinase. J Biol Chem 275, 6749-6757. https://doi.org/10.1074/jbc.275.10.6749
- Haneda, M., Sugimoto, T., and Kikkawa, R. (1999). Mitogen-activated protein kinase phosphatase: a negative regulator of the mitogen-activated protein kinase cascade. Eur J Pharmacol 365, 1-7. https://doi.org/10.1016/S0014-2999(98)00857-7
- He, R.J., Yu, Z.H., Zhang, R.Y., and Zhang, Z.Y. (2014). Protein tyrosine phosphatases as potential therapeutic targets. Acta Pharmacol Sin 35, 1227-1246. https://doi.org/10.1038/aps.2014.80
- Hutter, D., Chen, P., Barnes, J., and Liu, Y. (2000). Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation. Biochem J 352, 155-163. https://doi.org/10.1042/bj3520155
- Jeong, D.G., Cho, Y.H., Yoon, T.S., Kim, J.H., Ryu, S.E., and Kim, S.J. (2007). Crystal structure of the catalytic domain of human DUSP5, a dual specificity MAP kinase protein phosphatase. Proteins: Structure, Function, and Bioinformatics 66, 253-258.
- Jeong, D.G., Yoon, T.S., Kim, J.H., Shim, M.Y., Jung, S.K., Son, J.H., Ryu, S.E., and Kim, S.J. (2006). Crystal structure of the catalytic domain of human MAP kinase phosphatase 5: structural insight into constitutively active phosphatase. J Mol Biol 360, 946-955. https://doi.org/10.1016/j.jmb.2006.05.059
- Johnson, G.L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. https://doi.org/10.1126/science.1072682
- Kondoh, K., and Nishida, E. (2007). Regulation of MAP kinases by MAP kinase phosphatases. Biochim Biophys Acta 1773, 1227-1237. https://doi.org/10.1016/j.bbamcr.2006.12.002
-
Kumar, G.S., Zettl, H., Page, R., and Peti, W. (2013). Structural Basis for the Regulation of the MAP Kinase p38
${\alpha}$ by the Dual Specificity Phosphatase 16 MAP Kinase Binding Domain in Solution. J Biol Chem 288, 28347-28356. https://doi.org/10.1074/jbc.M113.499178 - Lin, Y.-W., and Yang, J.-L. (2006). Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem 281, 915-926. https://doi.org/10.1074/jbc.M508720200
- Liu, S., Sun, J.P., Zhou, B., and Zhang, Z.Y. (2006). Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc Natl Acad Sci U S A 103, 5326-5331. https://doi.org/10.1073/pnas.0510506103
- Liu, X., Zhang, C.S., Lu, C., Lin, S.C., Wu, J.W., and Wang, Z.X. (2016). A conserved motif in JNK/p38-specific MAPK phosphatases as a determinant for JNK1 recognition and inactivation. Nat Commun 7, 10879. https://doi.org/10.1038/ncomms10879
- Lu, C., Liu, X., Zhang, C.S., Gong, H., Wu, J.W., and Wang, Z.X. (2017). Structural and dynamic insights into the mechanism of allosteric signal transmission in ERK2-mediated MKP3 activation. Biochemistry 56, 6165-6175. https://doi.org/10.1021/acs.biochem.7b00827
- Mark, J.K., Aubin, R.A., Smith, S., and Hefford, M.A. (2008). Inhibition of mitogen-activated protein kinase phosphatase 3 activity by interdomain binding. J Biol Chem 283, 28574-28583. https://doi.org/10.1074/jbc.M801747200
- Molina, G., Vogt, A., Bakan, A., Dai, W., De Oliveira, P.Q., Znosko, W., Smithgall, T.E., Bahar, I., Lazo, J.S., and Day, B.W. (2009). Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat Chem Biol 5, 680-687. https://doi.org/10.1038/nchembio.190
- Muda, M., Theodosiou, A., Rodrigues, N., Boschert, U., Camps, M., Gillieron, C., Davies, K., Ashworth, A., and Arkinstall, S. (1996). The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 271, 27205-27208. https://doi.org/10.1074/jbc.271.44.27205
- Seternes, O. M., Kidger, A.M., and Keyse, S.M. (2019). Dual-specificity MAP kinase phosphatases in health and disease. Biochim Biophys Acta Mol Cell Res 1866, 124-143. https://doi.org/10.1016/j.bbamcr.2018.09.002
- Slack, D.N., Seternes, O.M., Gabrielson, M., and Keyse, S.M. (2001). Distinct binding determinants for ERK2/p38a and JNK MAP kinases mediate catalytic activation and substrate selectivity of MAP kinase phosphatase-1. J Biol Chem 276, 16491-164500. https://doi.org/10.1074/jbc.M010966200
- Stewart, A.E., Dowd, S., Keyse, S.M., and McDonald, N.Q. (1999). Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Nat Struct Biol 6, 174-181. https://doi.org/10.1038/5861
- Tanoue, T., Moriguchi, T., and Nishida, E. (1999). Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J Biol Chem 274, 19949-19956. https://doi.org/10.1074/jbc.274.28.19949
- Tanoue, T., Yamamoto, T., Maeda, R., and Nishida, E. (2001). A novel MAPK phosphatase, MKP-7 acts preferentially on JNK/SAPK and p38alpha and beta MAPKs. J Biol Chem 276, 26629-26639. https://doi.org/10.1074/jbc.M101981200
- Widmann, C., Gibson, S., Jarpe, M.B., and Johnson, G.L. (1999). Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79, 143-180. https://doi.org/10.1152/physrev.1999.79.1.143
-
Zhang, Y.Y., Wu, J.W., and Wang, Z.X. (2011a). A distinct interaction mode revealed by the crystal structure of the kinase p38
${\alpha}$ with the MAPK binding domain of the phosphatase MKP5. Sci Signal 4, ra88. -
Zhang, Y.Y., Wu, J.W., and Wang, Z.-X. (2011b). MAP kinase phosphatase 3-mediated crosstalk between MAP kinases ERK2 and p38
${\alpha}$ . J Biol Chem 286, 16150-16162. https://doi.org/10.1074/jbc.M110.203786 - Zhang, Y., Blattman, J.N., Kennedy, N.J., Duong, J., Nguyen, T., Wang, Y., Davis, R.J., Greenberg, P.D., Flavell, R.A., and Dong, C. (2004). Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430, 793-797. https://doi.org/10.1038/nature02764
- Zhou, B., Wu, L., Shen, K., Zhang, J., Lawrence, D.S., and Zhang, Z.Y. (2001). Multiple regions of MAP kinase phosphatase 3 are involved in its recognition and activation by ERK2. J Biol Chem 276, 6506-6515. https://doi.org/10.1074/jbc.M009753200
- Zhou, B., Zhang, J., Liu, S., Reddy, S., Wang, F., and Zhang, Z.Y. (2006). Mapping ERK2-MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry. J Biol Chem 281, 38834-38844. https://doi.org/10.1074/jbc.M608916200