DOI QR코드

DOI QR Code

Genetics of Alzheimer's Disease

  • Kim, Jong Hun (Department of Neurology, National Health Insurance Service Ilsan Hospital)
  • Received : 2018.11.24
  • Accepted : 2018.12.06
  • Published : 2018.12.31

Abstract

Alzheimer's disease (AD) related genes have been elucidated by advanced genetic techniques. Familial autosomal dominant AD genes founded by linkage analyses are APP, PSEN1, PSEN2, ABCA7, and SORL1. Genome-wide association studies have found risk genes such as ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-HLA-DRB1, INPP5D, MEF2C, MS4A6A/MS4A4E, NME8, PICALM, PTK2B, SLC24A4, SORL1, and ZCWPW1. ABCA7, SORL1, TREM2, and APOE are proved to have high odds ratio (>2) in risk of AD using next generation sequencing studies. Thanks to the promising genetic techniques such as CRISPR-CAS9 and single-cell RNA sequencing opened a new era in genetics. CRISPR-CAS9 can directly link genetic knowledge to future treatment. Single-cell RNA sequencing are providing useful information on cell biology and pathogenesis of diverse diseases.

Keywords

References

  1. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005;308:385-389. https://doi.org/10.1126/science.1109557
  2. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 2013;45:1452-1458. https://doi.org/10.1038/ng.2802
  3. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, et al. Variant of TREM2 associated with the risk of Alzheimer's disease. N Engl J Med 2013;368:107-116. https://doi.org/10.1056/NEJMoa1211103
  4. Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S, et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline. Nature 2012;488:96-99. https://doi.org/10.1038/nature11283
  5. Dickson SP, Wang K, Krantz I, Hakonarson H, Goldstein DB. Rare variants create synthetic genome-wide associations. PLoS Biol 2010;8:e1000294. https://doi.org/10.1371/journal.pbio.1000294
  6. Steinberg S, Stefansson H, Jonsson T, Johannsdottir H, Ingason A, Helgason H, et al. Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nat Genet 2015;47:445-447. https://doi.org/10.1038/ng.3246
  7. Nicolas G, Wallon D, Charbonnier C, Quenez O, Rousseau S, Richard AC, et al. Screening of dementia genes by whole-exome sequencing in early-onset Alzheimer disease: input and lessons. Eur J Hum Genet 2016;24:710-716. https://doi.org/10.1038/ejhg.2015.173
  8. Cuyvers E, De Roeck A, Van den Bossche T, Van Cauwenberghe C, Bettens K, Vermeulen S, et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer's disease patients: a targeted resequencing study. Lancet Neurol 2015;14:814-822. https://doi.org/10.1016/S1474-4422(15)00133-7
  9. Pottier C, Hannequin D, Coutant S, Rovelet-Lecrux A, Wallon D, Rousseau S, et al. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Mol Psychiatry 2012;17:875-879. https://doi.org/10.1038/mp.2012.15
  10. Slattery CF, Beck JA, Harper L, Adamson G, Abdi Z, Uphill J, et al. R47H TREM2 variant increases risk of typical early-onset Alzheimer's disease but not of prion or frontotemporal dementia. Alzheimers Dement 2014;10:602-608.e4. https://doi.org/10.1016/j.jalz.2014.05.1751
  11. Sullivan PF, Daly MJ, O'Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 2012;13:537-551.
  12. International Schizophrenia Consortium; Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009;460:748-752. https://doi.org/10.1038/nature08185
  13. Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell 2017;169:1177-1186. https://doi.org/10.1016/j.cell.2017.05.038
  14. Escott-Price V, Sims R, Bannister C, Harold D, Vronskaya M, Majounie E, et al. Common polygenic variation enhances risk prediction for Alzheimer's disease. Brain 2015;138:3673-3684. https://doi.org/10.1093/brain/awv268
  15. Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 2015;16:299-311.
  16. Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017;548:413-419. https://doi.org/10.1038/nature23305
  17. Lasken RS, McLean JS. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 2014;15:577-584.
  18. Rozenblatt-Rosen O, Stubbington MJ, Regev A, Teichmann SA. The human cell atlas: from vision to reality. Nature 2017;550:451-453. https://doi.org/10.1038/550451a
  19. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 2017;549:523-527. https://doi.org/10.1038/nature24016
  20. Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, et al. TREM2 maintains microglial metabolic fitness in Alzheimer's disease. Cell 2017;170:649-663.e13. https://doi.org/10.1016/j.cell.2017.07.023
  21. Huang YA, Zhou B, Wernig M, Sudhof TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and $A{\beta}$ secretion. Cell 2017;168:427-441.e21. https://doi.org/10.1016/j.cell.2016.12.044
  22. Wang Y, Cella M, Mallinson K, Ulrich JD, Young KL, Robinette ML, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 2015;160:1061-1071. https://doi.org/10.1016/j.cell.2015.01.049

Cited by

  1. Dopa Responsive Parkinsonism in an Early Onset Alzheimer’s Disease Patient with a Presenilin 1 Mutation (A434T) vol.71, pp.1, 2019, https://doi.org/10.3233/jad-190469
  2. Genetic Analysis of Chinese Patients with Early-Onset Dementia Using Next-Generation Sequencing vol.15, pp.None, 2020, https://doi.org/10.2147/cia.s271222
  3. “Amyloid‐beta accumulation cycle” as a prevention and/or therapy target for Alzheimer's disease vol.19, pp.3, 2020, https://doi.org/10.1111/acel.13109
  4. The relationship between the minor allele content and Alzheimer's disease vol.112, pp.3, 2020, https://doi.org/10.1016/j.ygeno.2020.01.015
  5. Weighted burden analysis of exome‐sequenced late‐onset Alzheimer's cases and controls provides further evidence for a role for PSEN1 and suggests involvement of the PI3K/Akt/GSK‐3 vol.84, pp.3, 2018, https://doi.org/10.1111/ahg.12375
  6. A novel variant c.3706C>T p.(Avg 1236Cys) in the ABCA7 gene in a Saudi patient with susceptibility to Alzheimer's disease 9 vol.9, pp.3, 2018, https://doi.org/10.5582/irdr.2020.03033
  7. Small Molecule Phenotypic Screen Identifies Novel Regulators of LDLR Expression vol.15, pp.12, 2018, https://doi.org/10.1021/acschembio.0c00851
  8. Synthesis, Computational Pharmacokinetics Report, Conceptual DFT-Based Calculations and Anti-Acetylcholinesterase Activity of Hydroxyapatite Nanoparticles Derived From Acorus Calamus Plant Extract vol.9, pp.None, 2018, https://doi.org/10.3389/fchem.2021.741037
  9. Roles of glutamate receptors in a novel in vitro model of early, comorbid cerebrovascular, and Alzheimer’s diseases vol.156, pp.4, 2018, https://doi.org/10.1111/jnc.15129
  10. Network-based analysis on genetic variants reveals the immunological mechanism underlying Alzheimer’s disease vol.128, pp.6, 2018, https://doi.org/10.1007/s00702-021-02337-9