DOI QR코드

DOI QR Code

18F-THK5351 PET Imaging in Nonfluent-Agrammatic Variant Primary Progressive Aphasia

  • Yoon, Cindy W (Department of Neurology, Inha University School of Medicine) ;
  • Jeong, Hye Jin (Neuroscience Research Institute, Gachon University) ;
  • Seo, Seongho (Department of Neuroscience, Gachon University College of Medicine) ;
  • Lee, Sang-Yoon (Department of Neuroscience, Gachon University College of Medicine) ;
  • Suh, Mee Kyung (Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Heo, Jae-Hyeok (Department of Neurology, Seoul Medical Center) ;
  • Lee, Yeong-Bae (Department of Neurology, Gachon University Gil Medical Center) ;
  • Park, Kee Hyung (Department of Neurology, Gachon University Gil Medical Center) ;
  • Okamura, Nobuyuki (Tohoku Medical and Pharmaceutical University) ;
  • Lee, Kyoung-Min (Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Noh, Young (Department of Neurology, Gachon University Gil Medical Center)
  • Received : 2018.10.01
  • Accepted : 2018.11.20
  • Published : 2018.09.30

Abstract

Background and Purpose: To analyze $^{18}F-THK5351$ positron emission tomography (PET) scans of patients with clinically diagnosed nonfluent/agrammatic variant primary progressive aphasia (navPPA). Methods: Thirty-one participants, including those with Alzheimer's disease (AD, n=13), navPPA (n=3), and those with normal control (NC, n=15) who completed 3 Tesla magnetic resonance imaging, $^{18}F-THK5351$ PET scans, and detailed neuropsychological tests, were included. Voxel-based and region of interest (ROI)-based analyses were performed to evaluate retention of $^{18}F-THK5351$ in navPPA patients. Results: In ROI-based analysis, patients with navPPA had higher levels of THK retention in the Broca's area, bilateral inferior frontal lobes, bilateral precentral gyri, and bilateral basal ganglia. Patients with navPPA showed higher levels of THK retention in bilateral frontal lobes (mainly left side) compared than NC in voxel-wise analysis. Conclusions: In our study, THK retention in navPPA patients was mainly distributed at the frontal region which was well correlated with functional-radiological distribution of navPPA. Our results suggest that tau PET imaging could be a supportive tool for diagnosis of navPPA in combination with a clinical history.

Keywords

Acknowledgement

Supported by : Korea Health Industry Development Institute (KHIDI)

References

  1. Mesulam MM. Primary progressive aphasia--a language-based dementia. N Engl J Med 2003;349:1535-1542. https://doi.org/10.1056/NEJMra022435
  2. Gorno-Tempini ML, Dronkers NF, Rankin KP, Ogar JM, Phengrasamy L, Rosen HJ, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol 2004;55:335-346. https://doi.org/10.1002/ana.10825
  3. Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF, Parisi JE, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 2006;129:1385-1398. https://doi.org/10.1093/brain/awl078
  4. Hodges JR, Davies RR, Xuereb JH, Casey B, Broe M, Bak TH, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol 2004;56:399-406. https://doi.org/10.1002/ana.20203
  5. Kertesz A, McMonagle P, Blair M, Davidson W, Munoz DG. The evolution and pathology of frontotemporal dementia. Brain 2005;128:1996-2005. https://doi.org/10.1093/brain/awh598
  6. Forman MS, Farmer J, Johnson JK, Clark CM, Arnold SE, Coslett HB, et al. Frontotemporal dementia: clinicopathological correlations. Ann Neurol 2006;59:952-962. https://doi.org/10.1002/ana.20873
  7. Knibb JA, Xuereb JH, Patterson K, Hodges JR. Clinical and pathological characterization of progressive aphasia. Ann Neurol 2006;59:156-165. https://doi.org/10.1002/ana.20700
  8. Harris JM, Gall C, Thompson JC, Richardson AM, Neary D, du Plessis D, et al. Classification and pathology of primary progressive aphasia. Neurology 2013;81:1832-1839. https://doi.org/10.1212/01.wnl.0000436070.28137.7b
  9. Grossman M. Primary progressive aphasia: clinicopathological correlations. Nat Rev Neurol 2010;6:88-97. https://doi.org/10.1038/nrneurol.2009.216
  10. Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC. Tau imaging: early progress and future directions. Lancet Neurol 2015;14:114-124. https://doi.org/10.1016/S1474-4422(14)70252-2
  11. Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease. J Nucl Med 2016;57:208-214. https://doi.org/10.2967/jnumed.115.164848
  12. Harada R, Ishiki A, Kai H, Sato N, Furukawa K, Furumoto S, et al. Correlations of 18F-THK5351 PET with postmortem burden of tau and astrogliosis in Alzheimer disease. J Nucl Med 2018;59:671-674. https://doi.org/10.2967/jnumed.117.197426
  13. Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, selegiline, reduces $^{18}F$-THK5351 uptake in the human brain. Alzheimers Res Ther 2017;9:25. https://doi.org/10.1186/s13195-017-0253-y
  14. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology 2011;76:1006-1014. https://doi.org/10.1212/WNL.0b013e31821103e6
  15. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer's disease. Neurology 1984;34:939-944. https://doi.org/10.1212/WNL.34.7.939
  16. Kang Y, Jahng S, Na DL. Seoul Neuropsychological Screening Battery. 2nd ed. Seoul: Human Brain Research & Consulting Co., 2012.
  17. Borroni B, Agosti C, Premi E, Cerini C, Cosseddu M, Paghera B, et al. The FTLD-modified Clinical Dementia Rating scale is a reliable tool for defining disease severity in frontotemporal lobar degeneration: evidence from a brain SPECT study. Eur J Neurol 2010;17:703-707. https://doi.org/10.1111/j.1468-1331.2009.02911.x
  18. Kim EJ, Park KW, Lee JH, Choi S, Jeong JH, Yoon SJ, et al. Clinical and neuropsychological characteristics of a nationwide hospital-based registry of frontotemporal dementia patients in Korea: a CREDOS-FTD study. Dement Geriatr Cogn Dis Extra 2014;4:242-251. https://doi.org/10.1159/000360278
  19. Knopman DS, Kramer JH, Boeve BF, Caselli RJ, Graff-Radford NR, Mendez MF, et al. Development of methodology for conducting clinical trials in frontotemporal lobar degeneration. Brain 2008;131:2957-2968. https://doi.org/10.1093/brain/awn234
  20. Lee JH, Kim SH, Kim GH, Seo SW, Park HK, Oh SJ, et al. Identification of pure subcortical vascular dementia using 11C-Pittsburgh compound B. Neurology 2011;77:18-25. https://doi.org/10.1212/WNL.0b013e318221acee
  21. Ahn HJ, Chin J, Park A, Lee BH, Suh MK, Seo SW, et al. Seoul neuropsychological screening batterydementia version (SNSB-D): a useful tool for assessing and monitoring cognitive impairments in dementia patients. J Korean Med Sci 2010;25:1071-1076. https://doi.org/10.3346/jkms.2010.25.7.1071
  22. Kim H, Na DL. Normative data on the Korean version of the Western Aphasia Battery. J Clin Exp Neuropsychol 2004;26:1011-1020. https://doi.org/10.1080/13803390490515397
  23. Thurfjell L, Lilja J, Lundqvist R, Buckley C, Smith A, Vandenberghe R, et al. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: concordance with visual image reads. J Nucl Med 2014;55:1623-1628. https://doi.org/10.2967/jnumed.114.142109
  24. Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: principle and validation. J Nucl Med 1998;39:904-911.
  25. Rousset OG, Collins DL, Rahmim A, Wong DF. Design and implementation of an automated partial volume correction in PET: application to dopamine receptor quantification in the normal human striatum. J Nucl Med 2008;49:1097-1106. https://doi.org/10.2967/jnumed.107.048330
  26. Seelaar H, Kamphorst W, Rosso SM, Azmani A, Masdjedi R, de Koning I, et al. Distinct genetic forms of frontotemporal dementia. Neurology 2008;71:1220-1226. https://doi.org/10.1212/01.wnl.0000319702.37497.72
  27. Mesulam M, Wicklund A, Johnson N, Rogalski E, Leger GC, Rademaker A, et al. Alzheimer and frontotemporal pathology in subsets of primary progressive aphasia. Ann Neurol 2008;63:709-719. https://doi.org/10.1002/ana.21388
  28. Josephs KA, Petersen RC, Knopman DS, Boeve BF, Whitwell JL, Duffy JR, et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 2006;66:41-48. https://doi.org/10.1212/01.wnl.0000191307.69661.c3
  29. Kikuchi A, Okamura N, Hasegawa T, Harada R, Watanuki S, Funaki Y, et al. In vivo visualization of tau deposits in corticobasal syndrome by 18F-THK5351 PET. Neurology 2016;87:2309-2316. https://doi.org/10.1212/WNL.0000000000003375
  30. Vettermann F, Brendel M, Danek A, Levin J, Bartenstein P, Okamura N, et al. [18F] THK-5351 PET in patients with clinically diagnosed progressive supranuclear palsy. J Nucl Med 2016;57:457.
  31. Ishiki A, Harada R, Okamura N, Tomita N, Rowe CC, Villemagne VL, et al. Tau imaging with [$^{18}F$]THK-5351 in progressive supranuclear palsy. Eur J Neurol 2017;24:130-136. https://doi.org/10.1111/ene.13164
  32. Gorno-Tempini ML, Ogar JM, Brambati SM, Wang P, Jeong JH, Rankin KP, et al. Anatomical correlates of early mutism in progressive nonfluent aphasia. Neurology 2006;67:1849-1851. https://doi.org/10.1212/01.wnl.0000237038.55627.5b
  33. Kremen SA, Mendez MF, Tsai PH, Teng E. Extrapyramidal signs in the primary progressive aphasias. Am J Alzheimers Dis Other Demen 2011;26:72-77. https://doi.org/10.1177/1533317510391239
  34. Ferrari J, Pontello N, Martinez-Cuitino M, Borovinsky G, Gleichgerrcht E, Torralva T, et al. Extrapyramidal signs across variants of primary progressive aphasias. Mov Disord 2014;29 Suppl 1:598.
  35. Gulyas B, Pavlova E, Kasa P, Gulya K, Bakota L, Varszegi S, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int 2011;58:60-68. https://doi.org/10.1016/j.neuint.2010.10.013

Cited by

  1. Relationships between [18F]-THK5351 Retention and Language Functions in Primary Progressive Aphasia vol.15, pp.4, 2018, https://doi.org/10.3988/jcn.2019.15.4.527