DOI QR코드

DOI QR Code

Electrochemical Characteristics of Electrolyte Additives and Nano-Pb/AC Anode for Ultra Batteries

울트라 배터리 용 전해액 첨가제와 Nano-Pb/AC 음극의 전기화학적 특성

  • Kim, Geun Joong (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Jong Dae (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2018.04.11
  • Accepted : 2018.06.10
  • Published : 2018.10.10

Abstract

In this study, the electrochemical properties of nano-Pb/activated carbon (nano-Pb/AC) composites and electrolyte additives were examined to improve the performance of ultra batteries. Physical properties of the prepared nano-Pb/AC composites were analyzed using FE-SEM, TEM, XPS and BET. The electrochemical performances of ultra batteries were performed by cycle, rate performance and impedance tests. The cycling performance of nano-Pb/AC (Pb : 9 wt%) coated ultra battery increased by 150% with respect to the lead acid one, and the discharge specific capacity increased by 119-122% for 1-5 C rate tests. As a result of the impedance test, it was confirmed that the internal resistance decreased as the nano lead content increased. The cycle performance of the ultra battery containing 0.45 vol% electrolyte additives showed 140% longer than that of no electrolyte additives.

본 연구에서는 울트라 배터리의 전기화학적 성능을 향상시키기 위해서 Nano-Pb/Activated Carbon (Nano-Pb/AC) 복합소재와 전해액 첨가제의 특성이 조사되었다. 제조된 복합 소재의 물리적 특성은 FE-SEM, TEM, XPS, BET를 이용하여 분석하였고, 울트라 배터리의 전기화학적 성능은 사이클, 율속, 임피던스 테스트를 통해 조사되었다. 납 산 배터리에 비하여 나노 납 함량이 9 wt%인 복합소재로 코팅된 울트라 배터리는 사이클 성능이 150%로 개선되었으며, 1-5 C 율속 테스트에서 방전 용량이 119-122%로 증가되었다. 또한 임피던스 테스트 결과 나노 납 함량이 증가할수록 내부 저항의 크기가 작아지는 것을 확인하였다. 전해액 첨가제가 0.45 vol% 포함된 배터리의 장기 사이클 성능은 140%로 향상되었다.

Keywords

References

  1. M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104, 4245-4269 (2004). https://doi.org/10.1021/cr020730k
  2. D. Pavlov, T. Rogachev, P. Nikolov, and G. Petkova, Mechanism of action of electrochemically active carbons on the process that take place at the negative plates of lead-acid batteries, J. Power Sources, 191, 58-75 (2009). https://doi.org/10.1016/j.jpowsour.2008.11.056
  3. H. Y. Chen, A. J. Li, and D. E. Finlow, The lead and lead-acid battery industries during 2002 and 2007 in China, J. Power Sources, 191, 22-27 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.140
  4. M. Saravanan, M. Ganesan, and S. Ambalavanan, An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery, J. Power Sources, 251, 20-29 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.143
  5. P. Baca, K. Micha, P. Krivik, K. Tonar, and P. Toser, Study of the influence of carbon on the negative lead-acid battery electrodes, J. Power Sources, 196, 3988-3992 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.046
  6. X. Zou, Z. Kang, D. Shu, Y. Liao, Y. Gong, C. He, J. Hao, and Y. Zhong, Effects of carbon additives on the perfomance of negative electrode of lead-carbon battery, Electrochim. Acta, 151, 89-98 (2015). https://doi.org/10.1016/j.electacta.2014.11.027
  7. L. Wang, H. Zhang, W. Zhang, G. Cao, H. Zhao, and Y. Yang, Enhancing cycle performance of lead-carbon battery anodes by lead-doped porous carbon composite and graphite additives, Mater. Lett., 206, 113-116 (2017). https://doi.org/10.1016/j.matlet.2017.06.120
  8. J. Lian, W. Li, F. Wang, J. Yan, K. Wang, S. Cheng, and K. Jiang, Enhanced performance of lead acid batteries with $Bi_2O_2CO_3$/activated carbon additives to negative plates, J. Electrochem. Soc., 164, 1726-1730 (2017). https://doi.org/10.1149/2.1561707jes
  9. B. Hong, L. Jiang, H. Xue, F. Liu, M. Jia, J. Li, and Y. Liu, Characterization of nano-lead-doped active carbon and its application in lead-acid battery, J. Power Sources, 270, 332-341 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.145
  10. Q. Wang, J. Liu, D. Yang, X. Yuan, L. Li, X. Zhu, W. Zhang, Y. Hu, X. Sun, S. Liang, J. Hu, R. V. Kumar, and J. Yang, Stannous sulfate as an electrolyte additive for lead acid battery made from a novel ultrafine leady oxide, J. Power Sources, 285, 485-492 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.125
  11. P. Perret, Z. Khani, T. Brousse, D. Belanger, and D. Guay, Carbon/$PbO_2$ asymmetric electrochemical capacitor based on methanesulfonic acid electrolyte, Electrochim. Acta, 56, 8122-8128 (2011). https://doi.org/10.1016/j.electacta.2011.05.125
  12. J. Wang, W. Zhang, X. Yue, Q. Yang, F. Liu, Y. Wang, D. Zhang, Z. Li, and J. Wang, One-pot synthesis of multifunctional magnetic ferrite-$MoS_2$-carbon dot nanohybrid adsorbent for efficient Pb(II) removal, J. Mater. Chem. A, 4, 3893-3900 (2016). https://doi.org/10.1039/C6TA00269B
  13. F. Schuth and W. Schmidt, Microporous and mesoporous materials, Adv. Mater., 14, 629-638 (2002). https://doi.org/10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO;2-B
  14. L. T. Lam, R. Louey, N. P. Haigh, O. V. Lim, D. G. Vella, C. G. Phyland, L. H. Vu, J. Furukawa, T. Takada, D. Monma, and T. Kano, VRLA Ultrabattery for high-rate partial-state-of-charge operation, J. Power Sources, 174, 16-29 (2007). https://doi.org/10.1016/j.jpowsour.2007.05.047
  15. M. S. Rahmanifa, Enhancing the cycle life of lead-acid batteries by modifying negative grid surface, Electrochim. Acta, 235, 10-18 (2017). https://doi.org/10.1016/j.electacta.2017.03.057
  16. P. Krivik, Methods of SoC determination of lead acid battery, J. Energy Storage, 15, 191-195 (2018). https://doi.org/10.1016/j.est.2017.11.013
  17. Q. Long, G. Ma, Q. Xu, C. Ma, J. Nan, A. Li, and H. Chen, Improving the cycle life of lead-acid batteries using three-dimensional reduced graphene oxide under the high-rate partial-state-of-charge condition, J. Power Sources, 343, 188-196 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.056
  18. Y. Liu, P. Pengran, X. Bu, G. Kuang, W. liu, and L. Lei, Nanocrosses of lead sulphate as the negative active material of lead acid batteries, J. Power Sources, 263, 1-6 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.135
  19. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.-C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Phys. Chem. Chem. Phys., 13, 17615-17624 (2011). https://doi.org/10.1039/c1cp21910c
  20. R. Paul, Aging mechanisms and service life of lead-acid batteries, J. Power Sources, 127, 33-44 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.052
  21. J. W. Hwang and J. D. Lee, Electrochemical characteristics of ultra battery anode material using the nano Pb/AC for ISG, Korean Chem. Eng. Res., 55, 593-599 (2017).