DOI QR코드

DOI QR Code

N2O Decomposition Characteristics and Efficiency Enhancement of Rh/CeO2 Catalyst

Rh/CeO2 촉매의 N2O 분해반응 특성 및 효율증진 연구

  • Nam, Ki Bok (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 남기복 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2018.04.09
  • Accepted : 2018.06.08
  • Published : 2018.10.10

Abstract

In this work, the $N_2O$ decomposition catalyst and reaction characteristics to control the $N_2O$ removal were described. Experiments were carried out by using Rh as an active metal catalyst on various supports and the $Rh/CeO_2$ catalyst with $CeO_2$ support showed the best activity for the $N_2O$ decomposition when it was prepared under the constant heat treatment condition ($500^{\circ}C$-4 hr). $H_2-TPR$ and XPS analyzes were performed to confirm the effect of the physical and chemical properties of the catalyst on $N_2O$ decomposition. As a result, it was found that the increase of the oxygen transfer capacity of the catalyst due to the increase of both the redox property and $Ce^{3+}$ amount affected the decomposition reaction of $N_2O$. In addition, the future work will include a treatment process capable of decomposition $N_2O$ and NO under the condition that $N_2O$ and NO are simultaneously generated and its characteristics of $N_2O$ decomposition reaction.

본 연구에서는 $N_2O$를 제거하기 위한 $N_2O$ 분해 촉매와 반응특성에 대한 연구를 수행하고자 한다. 다양한 지지체에 Rh를 활성금속으로 촉매를 제조하여 실험을 수행하였으며, $CeO_2$를 지지체로 하는 $Rh/CeO_2$ 촉매에서 가장 우수한 $N_2O$ 분해활성을 나타내었다. 특히 일정한 소성조건($500^{\circ}C$-4 hr)에서 $Rh/CeO_2$ 촉매를 제조하였을 때 가장 우수한 활성을 나타내었다. 또한 촉매의 특성이 $N_2O$ 분해 반응에 미치는 영향을 확인하고자 $H_2-TPR$ 및 XPS 분석을 수행하였다. 실험결과, 촉매의 redox 특성증진과 $Ce^{3+}$의 비율이 증가함에 따른 촉매의 산소전달능력의 증진이 $N_2O$ 분해반응에 영향을 주는 것으로 확인되었다. 또한, $N_2O$와 NO가 동시에 발생하는 조건에서 $N_2O$ 분해 반응특성과, $N_2O$와 NO를 동시에 처리 가능한 공정에 대하여 연구하고자 한다.

Keywords

References

  1. W. H. Yang and M. H. Kim, Catalytic reduction of $N_2O$ by $H_2$ over well-characterized Pt surfaces, Korean J. Chem. Eng., 23, 908-918 (2006). https://doi.org/10.1007/s11814-006-0007-1
  2. J. Perez-Ramirez, F. Kapteijn, K. Schoffel, and J. A. Moulijn, Fomation and control of $N_2O$ in nitric acid production: Where do we stand today?, Appl. Catal. B, 44, 11-141 (2003).
  3. Greenhouse Gas Inventory & Research Center of Korea, Nantional Greenhouse Gas Inventory Report of Korea, Ministry of Environment, Korea (2016).
  4. H. K. Moon, Foramtion of $N_2O$ in $NH_3O$-SCR deNOx ing reaction with $V_2O_5/TiO_2$-based catalysts for fossil fuels-fired power stations, Korean Chem. Eng. Res., 51(2), 163-170 (2013). https://doi.org/10.9713/kcer.2013.51.2.163
  5. S. C. Christoforou, E. A. Efthimiadis, and I. A. Vasalos, Catalytic conversion of $N_2O$ to $N_2$ over metal-based catalysts in the presence of hydrocarbons and oxygen, Catal. Lett., 79, 137-147 (2002). https://doi.org/10.1023/A:1015360425678
  6. P. Francesco, S. Martina, S. Giorgio, G. Eugenio, B. Flora, and M. Maela, Ru/$ZrO_2$ catalysts: II. $N_2O$ adsorption and decomposition, J. Catal., 192, 158-162 (2000). https://doi.org/10.1006/jcat.2000.2836
  7. X. Zhang, Q. Shen, C. He, C. Ma, J. Cheng, Z. Liu, and Z. Hao, Decomposition of nitrous oxide over Co-zeolite catalysts: role of zeolite structure and active site, Catal. Sci. Technol., 2, 1249-1258 (2012). https://doi.org/10.1039/c2cy00465h
  8. M. Hussain, D. Fino, and N. Russo, $N_2O$ decompostion by mesoporous silica supported Rh catalysts, J. Hazard. Mater., 211-212, 255-265 (2012). https://doi.org/10.1016/j.jhazmat.2011.08.024
  9. K. Doi, Y. Y. Wu, R. Takeda, A. Matsunami, N. Arai, T. Tagawa, and S. Goto, Catalytic decompostion of $N_2O$ in medical operating rooms over Rh/$Al_2O_3$, Pd/$Al_2O_3$, and Pt/$Al_2O_3$, Appl. Catal. B, 35, 43-51 (2001). https://doi.org/10.1016/S0926-3373(01)00231-4
  10. H. Song, Synthesis and Reaction Characteristics of $N_2O$ Decomposition Catalysts Derived from Hydrotalcite-type Precursors, MS. Thesis, Sangmyung Univ., Korea (2004).
  11. S. S. Kim, S. J. Lee, and S. C. Hong, Effect of $CeO_2$ addition to Rh/$Al_2O_3$ catalyst on $N_2O$ decomposition, Chem. Eng. J., 169, 173-179 (2011). https://doi.org/10.1016/j.cej.2011.03.001
  12. L. Chen, H. Y. Chen, J. Lin, and K. L. Tan, FT-IR, XPS and TPR studies of $N_2O$ decomposition over Cu-ZSM-5, Surf. Interface Anal., 28, 115-118 (1999). https://doi.org/10.1002/(SICI)1096-9918(199908)28:1<115::AID-SIA630>3.0.CO;2-7
  13. X. Li, Z. Changbin. H. Hong, and T. Yasutake, Catalytic decomposition of $N_2O$ over $CeO_2$ promoted $Co_3O_4$ spinel catalyst, Appl. Catal. B, 75, 167-174 (2007). https://doi.org/10.1016/j.apcatb.2007.04.013
  14. S. Parres-Esclapez, M. J. Illan-Gomez, C. Salinas-Martinez de Lecea, and A. Bueno-Lopez, Preparation and characterisation of $\gamma$-$Al_2O_3$ particles-supported Rh/$Ce_{0.9}Pr_{0.1}O_2$ catalyst for $N_2O$ decompostion in the presence of $O_2$, $H_2O$ and NOx, Int. J. Greenhouse Gas Control, 11, 251-261 (2012). https://doi.org/10.1016/j.ijggc.2012.09.003
  15. A. Trovarelli, Catalysis by Ceria and Related Materials, Imperial College Press, UK (2001).
  16. P. Burroughs, A. Hamnett, A. F. Orchard, and G. Thornton, Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium, J. Chem. Soc. Dalton Trans., 0, 1686-1698 (1976).
  17. A. E. Nelson and K. H. Schulz, Surface chemistry and microstructural analysis of $Ce_xZr_{1-x}O_{2-y}$ model catalyst surfaces, Appl. Surf. Sci., 210, 206-221 (2003). https://doi.org/10.1016/S0169-4332(03)00157-0
  18. L. Chen, J. Li, M. Ge, and R. Zhu, Enhanced activity of tungsten modified $CeO_2$/$TiO_2$ for selective catalytic reductioin of NOx with ammonia, Catal. Today, 153, 77-83 (2010). https://doi.org/10.1016/j.cattod.2010.01.062
  19. D. I. Kondarides and X. E. Verykios, Effect of chlorine on the chemisorptive properties of Rh/$CeO_2$ catalysts studied by XPS and temperature programmed desorption techniques, J. Catal., 174, 52-64 (1998). https://doi.org/10.1006/jcat.1997.1938

Cited by

  1. 분젠 예혼합 화염을 활용한 아산화질소 처리기술에 관한 연구 vol.27, pp.1, 2021, https://doi.org/10.7837/kosomes.2021.27.1.153
  2. 분젠 예혼합 화염을 활용한 아산화질소 처리기술에 관한 연구 vol.27, pp.1, 2021, https://doi.org/10.7837/kosomes.2021.27.1.153