DOI QR코드

DOI QR Code

Synthesis, Dispersion, and Tribological Characteristics of Alkyl Functionalized Graphene Oxide Nanosheets for Oil-based Lubricant Additives

액체 윤활제 첨가제용 알킬 기능화된 산화 그래핀의 합성/분산 및 트라이볼로지적 특성

  • 최진영 (계명대학교 자연대 화학과) ;
  • 김용재 (계명대학교 자연대 화학과) ;
  • 이창섭 (계명대학교 자연대 화학과)
  • Received : 2018.04.03
  • Accepted : 2018.05.26
  • Published : 2018.10.10

Abstract

Graphene has been reported to be an excellent lubricant additive that reduces friction and wear when coated on the surface of various materials or when dispersed in lubricants as an atomic thin material with the low surface energy. In this study, alkyl functionalized graphene oxide (FGO) nanosheets for oil-based lubricant additives were prepared by using three types of alkyl chloride chemicals (butyl chloride, octyl chloride, and tetradecyl chloride). The chemical and structural properties of the synthesized FGOs were analyzed by Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), and transmission electron microscope (TEM). The synthesized FGOs were dispersed at 0.02 wt% in PAO-0W40 oil and its tribological characteristics were investigated using a high frequency friction/wear tester. The friction coefficient and the wear track width of poly alpha olefin (PAO) oil added with FGO-14 were tested by a ball-on-disk method, and the measured results were reduced by ~5.88 and ~3.8%, respectively compared with those of the conventional PAO oil. Thus, it was found that the wear resistance of PAO oil was improved. In this study, we demonstrated the successful functionalization of GO as well as the improvement of dispersion stability and tribological characteristics of FGOs based on various alkyl chain lengths.

그래핀은 표면 에너지가 낮고 원자단위의 얇은 물질로서 다양한 소재의 표면에 코팅시키거나 윤활제에 분산시켜 접착력과 마찰을 줄여주는 우수한 윤활유 첨가제로 보고되고 있다. 본 연구에서는 산화 그래핀 나노시트를 세 가지 종류의 염화알킬(butyl chloride, octyl chloride 및 tetradecyl chloride)을 이용하여 액체 윤활제 첨가제용 기능화 산화 그래핀(alkyl functionalized GO, FGO)을 제조하였다. 제조한 기능화 산화 그래핀의 화학적 및 구조적 특성은 Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), and transmission electron microscope (TEM)으로 분석하였다. 제조한 기능화 산화 그래핀은 PAO-0W40 오일에 0.02 wt%의 농도로 분산시켰으며, 트라이볼로지적 특성을 high frequency friction/wear tester로 분석한 결과, FGO-14이 첨가된 PAO-0W40 오일은 ball-on-disk의 직선왕복운동 하에서 기유에 비해 ~5.88%의 마찰계수와 ~3.8%의 마모 트랙 폭을 감소시킴으로써 내마모성이 향상됨을 확인하였다. 본 연구에서는 산화 그래핀의 성공적인 기능화와 더불어 다양한 탄화수소사슬 길이에 따른 분산 안정성 및 트라이볼로지적 특성의 향상을 입증하였다.

Keywords

References

  1. Z. Chen, Y. Liu, and J. Luo, Chin. Tribological properties of few-layer graphene oxide sheets as oil-based lubricant additives, J. Mech. Eng., 29, 439-444 (2016).
  2. T. Yokohata, K. Kato, T. Miyamoto, and R. Kaneko, Load-dependency of friction coefficient between silicon-oxides and diamond under ultra-low contact load, J. Tribol., 120, 503-509 (1998). https://doi.org/10.1115/1.2834579
  3. K. Holmberg, P. Andersson, and A. Erdemir, Global energy consumption due to friction in passenger cars, Tribol. Int., 47, 221-234 (2012). https://doi.org/10.1016/j.triboint.2011.11.022
  4. O. Tevet, P. Von-Huth, R. Popovitz-Biro, R. Rosentsveig, H. D. Wagner, and R. Tenne, Friction mechanism of individual multilayered nanoparticles, Proc. Natl. Acad. Sci. U.S.A., 108, 19901-19906 (2011). https://doi.org/10.1073/pnas.1106553108
  5. Y. Tian, Z. Li, W. Gao, K. Cai, F. Wang, D. Zhang, and S. Fatikow, Mechanical properties investigation of monolayer h-BN sheet under in-plane shear displacement using molecular dynamics simulations, J. Appl. Phys., 115, 14308-14330 (2014). https://doi.org/10.1063/1.4844475
  6. M. Chhowalla and G. A. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear, Nature, 407, 164-167 (2000). https://doi.org/10.1038/35025020
  7. A. K. Geim and K. S. Novoselov, The rise of grapheme, Nature Mater., 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
  8. D. Berman, A. Erdemir, and A. V. Surmant, Graphene: A new emerging lubricant, Mater. Today, 17, 31-42 (2014). https://doi.org/10.1016/j.mattod.2013.12.003
  9. K. S. Kim, H. J. Lee, C. Lee, S. K. Lee, H. Jang, J. H. Ahn, J. H. Kim, and H. J. Lee, Chemical vapor deposition-grown graphene: the thinnest solid lubricant, ACS Nano, 5, 5107-5114 (2011). https://doi.org/10.1021/nn2011865
  10. S. B. Rho, H. Lee, and K. H. Son, Studies on solid inflammable lubricants for refractory slates, J. Korea Acad. Ind. Coop. Soc., 16, 2308-2313 (2015).
  11. H. Chen, L. Xiao, Y. Xu, X. Zeng, and Z. B. Ye, A novel nanodrag reducer for low permeability reservoir water flooding: Long-chain alkylamines modified graphene oxide, J. Nanomater., 2016, 8716257-8716265 (2016).
  12. W. S. Ma, J. Li, B. J. Deng, and X. S. Zhao, Preparation and characterization of long-chain alkyl silane-functionalized graphene film, J. Mater. Sci., 48, 156-161 (2013). https://doi.org/10.1007/s10853-012-6723-5
  13. S. H. Lee, J. M. Yun, J. Kwon, and S. O. Kim, Tailored assembly of graphene from solvent dispersion, Polym. Sci. Technol., 22, 130-136 (2011).
  14. W. Zhang, M. Zhou, H. Zhu, Y. Tian, K. Wang, J. Wei, and D. Wu, Tribological properties of oleic acid-modified graphene as lubricant oil additives, J. Phys. D, 44, 205303-205306 (2011). https://doi.org/10.1088/0022-3727/44/20/205303
  15. H. P. Mungse, N. Kumar, and O. P. Khatri, Synthesis, dispersion and lubrication potential of basal plane functionalized alkylated graphene nanosheets, RSC Adv., 5, 25565-25571 (2015). https://doi.org/10.1039/C4RA16975A
  16. N. A. Daud, B. W. Chieng, N. A. Ibrahim, and Z. A. Talib, Synthesis and characterisation of functionalised-graphene oxide by gamma-ray irradiation, J. Eng. Sci., 13, 1-17 (2017). https://doi.org/10.21315/jes2017.13.1
  17. S. Arunvisut, S. Phummanee, and A. Somwangthanaroj, Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites, J. Appl. Polym. Sci., 106, 2210-2217 (2007). https://doi.org/10.1002/app.26839
  18. J. Jang, V. H. Pham, B. Rajagopalan, S. H. Hur, and J. S. Chung, Effects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites, J. Colloid Interface Sci., 424, 62-66 (2014). https://doi.org/10.1016/j.jcis.2014.03.018
  19. S. H. Ryu and A. M. Shanmugharaj, Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites, Chem. Eng. J., 244, 552-560 (2014). https://doi.org/10.1016/j.cej.2014.01.101
  20. W. Sun, R. Hu, M. Zhang, J. Liu, and M. Zhu, Binding of carbon coated nano-silicon in graphene sheets by wet ballmilling and pyrolysis as high performance anodes for lithium-ion batteries, J. Power Sources., 318, 113-120 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.016
  21. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  22. A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61, 14095-14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095
  23. R. Gusain and O. P. Khatri, Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives, J. Mater. Chem. A, 1, 5612-5619 (2013). https://doi.org/10.1039/c3ta10248c
  24. J. Luo, H. D. Jang, T. Sun, L. Xiao, Z. He, A. P. Katsoulidis, and J. Huang, Compression and aggregation-resistant particles of crumpled soft sheets, ACS Nano, 5, 8943-8949 (2011). https://doi.org/10.1021/nn203115u
  25. X. Dou, A. R. Koltonow, X. He, H. D. Jang, Q. Wang, Y. W. Chung, and J. Huang, Self-dispersed crumpled graphene balls in oil for friction and wear reduction, Proc. Natl. Acad. Sci. U.S.A., 113, 1528-1533 (2016). https://doi.org/10.1073/pnas.1520994113