References
- Z. Chen, Y. Liu, and J. Luo, Chin. Tribological properties of few-layer graphene oxide sheets as oil-based lubricant additives, J. Mech. Eng., 29, 439-444 (2016).
- T. Yokohata, K. Kato, T. Miyamoto, and R. Kaneko, Load-dependency of friction coefficient between silicon-oxides and diamond under ultra-low contact load, J. Tribol., 120, 503-509 (1998). https://doi.org/10.1115/1.2834579
- K. Holmberg, P. Andersson, and A. Erdemir, Global energy consumption due to friction in passenger cars, Tribol. Int., 47, 221-234 (2012). https://doi.org/10.1016/j.triboint.2011.11.022
- O. Tevet, P. Von-Huth, R. Popovitz-Biro, R. Rosentsveig, H. D. Wagner, and R. Tenne, Friction mechanism of individual multilayered nanoparticles, Proc. Natl. Acad. Sci. U.S.A., 108, 19901-19906 (2011). https://doi.org/10.1073/pnas.1106553108
- Y. Tian, Z. Li, W. Gao, K. Cai, F. Wang, D. Zhang, and S. Fatikow, Mechanical properties investigation of monolayer h-BN sheet under in-plane shear displacement using molecular dynamics simulations, J. Appl. Phys., 115, 14308-14330 (2014). https://doi.org/10.1063/1.4844475
- M. Chhowalla and G. A. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear, Nature, 407, 164-167 (2000). https://doi.org/10.1038/35025020
- A. K. Geim and K. S. Novoselov, The rise of grapheme, Nature Mater., 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
- D. Berman, A. Erdemir, and A. V. Surmant, Graphene: A new emerging lubricant, Mater. Today, 17, 31-42 (2014). https://doi.org/10.1016/j.mattod.2013.12.003
- K. S. Kim, H. J. Lee, C. Lee, S. K. Lee, H. Jang, J. H. Ahn, J. H. Kim, and H. J. Lee, Chemical vapor deposition-grown graphene: the thinnest solid lubricant, ACS Nano, 5, 5107-5114 (2011). https://doi.org/10.1021/nn2011865
- S. B. Rho, H. Lee, and K. H. Son, Studies on solid inflammable lubricants for refractory slates, J. Korea Acad. Ind. Coop. Soc., 16, 2308-2313 (2015).
- H. Chen, L. Xiao, Y. Xu, X. Zeng, and Z. B. Ye, A novel nanodrag reducer for low permeability reservoir water flooding: Long-chain alkylamines modified graphene oxide, J. Nanomater., 2016, 8716257-8716265 (2016).
- W. S. Ma, J. Li, B. J. Deng, and X. S. Zhao, Preparation and characterization of long-chain alkyl silane-functionalized graphene film, J. Mater. Sci., 48, 156-161 (2013). https://doi.org/10.1007/s10853-012-6723-5
- S. H. Lee, J. M. Yun, J. Kwon, and S. O. Kim, Tailored assembly of graphene from solvent dispersion, Polym. Sci. Technol., 22, 130-136 (2011).
- W. Zhang, M. Zhou, H. Zhu, Y. Tian, K. Wang, J. Wei, and D. Wu, Tribological properties of oleic acid-modified graphene as lubricant oil additives, J. Phys. D, 44, 205303-205306 (2011). https://doi.org/10.1088/0022-3727/44/20/205303
- H. P. Mungse, N. Kumar, and O. P. Khatri, Synthesis, dispersion and lubrication potential of basal plane functionalized alkylated graphene nanosheets, RSC Adv., 5, 25565-25571 (2015). https://doi.org/10.1039/C4RA16975A
- N. A. Daud, B. W. Chieng, N. A. Ibrahim, and Z. A. Talib, Synthesis and characterisation of functionalised-graphene oxide by gamma-ray irradiation, J. Eng. Sci., 13, 1-17 (2017). https://doi.org/10.21315/jes2017.13.1
- S. Arunvisut, S. Phummanee, and A. Somwangthanaroj, Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites, J. Appl. Polym. Sci., 106, 2210-2217 (2007). https://doi.org/10.1002/app.26839
- J. Jang, V. H. Pham, B. Rajagopalan, S. H. Hur, and J. S. Chung, Effects of the alkylamine functionalization of graphene oxide on the properties of polystyrene nanocomposites, J. Colloid Interface Sci., 424, 62-66 (2014). https://doi.org/10.1016/j.jcis.2014.03.018
- S. H. Ryu and A. M. Shanmugharaj, Influence of long-chain alkylamine-modified graphene oxide on the crystallization, mechanical and electrical properties of isotactic polypropylene nanocomposites, Chem. Eng. J., 244, 552-560 (2014). https://doi.org/10.1016/j.cej.2014.01.101
- W. Sun, R. Hu, M. Zhang, J. Liu, and M. Zhu, Binding of carbon coated nano-silicon in graphene sheets by wet ballmilling and pyrolysis as high performance anodes for lithium-ion batteries, J. Power Sources., 318, 113-120 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.016
- S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558-1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
- A. C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61, 14095-14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095
- R. Gusain and O. P. Khatri, Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives, J. Mater. Chem. A, 1, 5612-5619 (2013). https://doi.org/10.1039/c3ta10248c
- J. Luo, H. D. Jang, T. Sun, L. Xiao, Z. He, A. P. Katsoulidis, and J. Huang, Compression and aggregation-resistant particles of crumpled soft sheets, ACS Nano, 5, 8943-8949 (2011). https://doi.org/10.1021/nn203115u
- X. Dou, A. R. Koltonow, X. He, H. D. Jang, Q. Wang, Y. W. Chung, and J. Huang, Self-dispersed crumpled graphene balls in oil for friction and wear reduction, Proc. Natl. Acad. Sci. U.S.A., 113, 1528-1533 (2016). https://doi.org/10.1073/pnas.1520994113