DOI QR코드

DOI QR Code

폐 RHDM 촉매의 재생 후 워시코팅에 의한 NOx 저감 효율

The Efficiency of NOx Reduction by Regeneration and Wash Coating of Spent RHDM Catalyst

  • Na, Woo-jin (Department of Chemical Engineering, Hanseo University) ;
  • Park, Hea-Kyung (Department of Chemical Engineering, Hanseo University)
  • 투고 : 2018.08.19
  • 심사 : 2018.09.20
  • 발행 : 2018.09.30

초록

폐 RHDM(Residue Hydrodemetallation) 촉매상에 침적된 비활성화 성분인 탄소, 황 을 고온배소 처리하여 제거한 후, 과량 침적되어 있는 바나듐은 초음파 교반기에서 5~15wt% 옥살산 수용액을 이용하여 $50^{\circ}C$, 5분 조건하에 바나듐 추출량을 조절함으로써 NOx 저감을 위한SCR(Selective Catalytic Reduction) 촉매로의 적용 가능성을 확인하고자 하였다. 폐촉매와 단계별 처리된 RHDM 촉매를 대상으로 상압반응기상에서 NOx 저감 효율을 측정하였고, 촉매의 성분분석은 ICP, C & S analyzer 및 XRF를 이용하여 분석하였다. 10wt% 옥살산 수용액으로 바나듐을 침출한 촉매가 가장 안정적이었으며 높은 NOx 저감 효율을 보였다. 이를 메탈폼 형태의 지지체에 워시코팅한 촉매는 상용 SCR 촉매와 동등 수준의 NOx 저감 효율을 나타내었다. 따라서 폐 RHDM 촉매의 처리 조건 조정에 관한 후속 연구를 통하여 각 적용처에 적합한 SCR 촉매로의 이용 가능성은 충분할 것으로 사료된다.

Utilization of spent RHDM(Residue Hydrodemetallation) catalyst as de-NOx SCR(Selective Catalytic Reduction) catalyst was studied by conducting by heptane cleaning and high-temperature roasting for removal of deposited carbon and sulfur. Followed by oxalic acid leaching was carried out for controlling excess vanadium deposited on spent RHDM catalyst in search of appropriate vanadium loadings for the best SCR performance and the leaching conditions are 5~15wt% concentration of oxalic acid and 5min leaching time at $50^{\circ}C$ with the ultra-sonic agitator. De-NOx activities of prepared and commercial SCR catalyst were measured by the atmospheric SCR catalyst performance test unit, their residual content were also carried out by ICP, C&S Analysis and XRF. Acid leaching (AL-10) catalyst showed the highest de-NOx efficiency of all prepared catalysts and the de-NOx efficiency over wash coated catalyst(WC-AL-10) was equivalent to that of commercial SCR catalyst. Therefore the possibility of using as SCR catalyst for each application by adjusting treatment conditions of spent RHDM catalyst was found and further research will be needed in detail for the its commercialization.

키워드

참고문헌

  1. H. K. Park, M. K. Jun, H. L. Koh, "Remanufacturing Technology and Market Situation of Used Chemical Catalyst", Korean Industrial Chemistry News, Vol.15, No.5 pp. 14-25, (2012)
  2. H. K. Park, "A study of hydrodesulfurization of dibenzothiophene over Mo, CoMo, NiMo/${\gamma}$ -$Al_2O_3$ catalysts with various states, and their characterization and kinetic analysis", Chem. Eng. Yeonsei Univ. (1994).
  3. H. J. Jo, S. G. Moun, Y. M. Jo, Y. S. Chung, "A Patent Analysis on Impurity Removal and Catalysts for Crude Oil Purification", Clean Technol, Vol.16, No.1 pp. 1-11, (2010).
  4. A. R. Ware, J. Wei, "Catalytic Hydro demetallation of Nickel Porphyrins : II. Effects of pyridine and of sulfiding", j. Catal, Vol.93, No.1 pp. 122-134, (1985). https://doi.org/10.1016/0021-9517(85)90156-3
  5. M. Marafi, A. Stanislaus, E. Furimsky, E., "Handbook of Spent Hydro procrssing Catalyst Regeneration, Rejuvenation and Reclamation" Elsevier, pp. 17-189, (2010).
  6. H. J. Jeon, G. Seo, "Introduction to Catalysis," 4th ed., Hanlimwon Publishers, Seoul, pp. 285, (2002).
  7. C. L. R. Bonne, V. P. Steenderen, V. E. A. Diepen, A. J. Moulijn, "Hydrodemetallisation of nicke l- 5, 10, 15, 20 - tetraphenylporphyrin over sulphided Mo/$Al_2O_3$ Initial catalyst deactivation", Appl. Catal. A. Gen, Vol.108, No.2 pp. 171-186, (1994). https://doi.org/10.1016/0926-860X(94)85069-0
  8. J. Wei, X. Zhao, "Metal Deposition and Deactivation of Hydro demetallation Catalysts", J. Chem. Eng. Sci, Vol.47, No.9-11 pp. 2721-2726, (1992). https://doi.org/10.1016/0009-2509(92)87119-B
  9. J. H. Kim, H. T. Kim, W. S. Cho, "Recovery of Valuable Metals from the Spent Catalyst", Korean J. Chem. Eng, Vol.1, No.2 pp. 845-848, (1995).
  10. K. L. Kim, K. S. Choi, "Desulfurization, denitrogenation, deoxygenation and demetallation from petroleum fuels", Korean J. Chem. Eng, Vol.6, No.2 pp. 133-138, (1988).
  11. S. Y. Kang, H. S. Koo, K. S. Choi, K. L. Kim, "A Study of Hydrodemetallation of Ni-TPP Catalyzed by CoMo/${\gamma}$-$Al_2O_3$", Korean J. Chem. Eng, Vol.29, No.1 pp. 11-18, (1991).
  12. H. S. Shim, H. K. Park, E. S. Ko, K. L. Kim, "A Study of Hydrodemetallation of VO-TPP Over CoMo/${\gamma}$-$Al_2O_3$ Catalyst", J. Ind. Eng. Chem, Vol.4, No.4 pp. 701-708, (1993).
  13. M. Inomata, K. Mori, A. Miyamoto, T. Ui, Y. Murakami, "Structures of supported vanadium oxide catalysts. 1. Vanadium(V) oxide/titanium dioxide (anatase), vanadium(V) oxide/titanium dioxide (rutile), and vanadium(V) oxide/titanium dioxide (mixture of anatase with rutile)", J. Phys. Chem, Vol.87, No.5 pp. 754-761, (1983). https://doi.org/10.1021/j100228a013
  14. N. lsabella, D. Lorenzo, L. Luca, G. Elio, F. Pio, "Study of thermal deactivation of a de-NOx com-mercial catalyst", Appl. Catal., B : Environmental, Vol.35, No.1, pp. 31-42, (2001) https://doi.org/10.1016/S0926-3373(01)00229-6
  15. S. J. Lee, S. C. Hong, "Deactivation and Regeneration of a Used De-NOx SCR Catalyst for Wastes Incinerator", J. Ind. Eng. Chem, Vol.19, No.3, pp. 259-263, (2008).
  16. L. Lietti, "Reactivity of $V_2O_5-WO_3$/$TiO_2$ de-NOx catalysts by transient methods", Applied catalysis B : Environmental, Vol.10, No.4 pp. 281-297, (1996). https://doi.org/10.1016/S0926-3373(97)80001-X
  17. P. Forzatti, L. Lietti, "Selective catalytic reduction of NOx by $NH_3$ from stationary sources", La Chimica e l'industria, Vol.78, No.6 pp. 685-691, (1996).