DOI QR코드

DOI QR Code

Selection of Optimal Culture Medium for Four Entomopathogenic Fungal Isolates with Dual Activity and Evaluation of Their Antimicrobial Activity against Several Phytopathogens

이중 활성 곤충병원성 곰팡이 4균주에 대한 최적 배양 배지 선발 및 다양한 항균활성 평가

  • Yun, Hwi-Geon (Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University) ;
  • Gwak, Won-Seok (Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University) ;
  • Woo, Soo-Dong (Department of Agricultural Biology, College of Agriculture, Life & Environment Science, Chungbuk National University)
  • 윤휘건 (충북대학교 농업생명환경대학 농생물학과) ;
  • 곽원석 (충북대학교 농업생명환경대학 농생물학과) ;
  • 우수동 (충북대학교 농업생명환경대학 농생물학과)
  • Received : 2018.05.11
  • Accepted : 2018.07.20
  • Published : 2018.09.01

Abstract

Selection of the optimal culture medium and evaluation of the antimicrobial activity against various phytopathogens were performed for four entomopathogenic fungal isolates with excellent insecticidal and antimicrobial activity against the two-spotted spider mite (Tetranychus urticae), green peach aphid (Myzus persicae), and gray mold (Botrytis cinerea). The optimal medium was selected by measuring the amount of blastospore production and the antifungal activity of the culture medium. On the basis of these experiments, GY medium was selected for Beauveria bassiana 2R-3-3-1 and Metarhizium anisopliae 4-2, SD3, and PDB medium for B. bassiana SD15. The antimicrobial activity test against other phytopathogens indicated that all four isolates showed high antifungal activities against Colletotrichum acutatum and Sclerotinia sclerotiorum. However, for Phytophthora capsici and C. fructicola, only M. anisopliae SD3 showed a high antifungal activity against P. capsici, and the other three isolates had little activity. Antibacterial activity against Clavibacter michiganensis subsp. michiganensis was high in two isolates of M. anisopliae but not in two isolates of B. bassiana. Thus, it was confirmed that entomopathogenic fungi effective for pest control could be effectively used as a control agent for various plant diseases.

점박이응애와 복숭아혹진딧물 그리고 잿빛곰팡이병균에 대해 우수한 살충 및 항균활성을 지닌 4가지 곤충병원성 곰팡이에 대해 효율적인 배양 배지 선발 및 다른 식물병원균에 대한 항균활성을 검정하였다. 효율적인 배지 선발은 출아포자 생산량과 배양액의 항진균활성 검정을 통해 선발하였으며, 그 결과 Beauveria bassiana 2R-3-3-1, Metarhizium anisopliae 4-2, SD3의 경우 GY배지가, B. bassiana SD15의 경우에는 PDB 배지가 적절한 배지로 선발되었다. 다른 식물병원균에 대한 항균활성 검정 결과, 4개 균주 모두 Colletotrichum acutatum과 Sclerotinia sclerotiorum에 대해서는 항진균 활성을 보였으나, Phytophthora capsici와 Colletotrichum fructicola에 대해서는 M. anisopliae SD3만 P. capsici에 대해 높은 항진균 활성을 나타내었고 다른 균주들의 활성은 미미하였다. Clavibacter michiganensissubsp. michiganensis에 대한 항세균 활성은 Metarhizium속의 2균주는 높은 활성을 보였으나 Beauveria속의 2 균주들은 활성을 보이지 않았다. 이상의 결과로 해충방제에 효과적인 곤충병원성 곰팡이가 다양한 식물병원균에 대해서도 효과적인 방제제로 이용될 수 있음을 확인할 수 있었다.

Keywords

References

  1. Hajek AE, St Leger RJ. Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 1994;39:293-322. https://doi.org/10.1146/annurev.en.39.010194.001453
  2. Milner RJ. Prospects for biopesticides for aphid control. Entomophaga 1997;42:227-39. https://doi.org/10.1007/BF02769900
  3. Shin TY, Bae SM, Kim DJ, Yun HG, Woo SD. Evaluation of virulence, tolerance to environmental factors and antimicrobial activities of entomopathogenic fungi against two-spotted spider mite, Tetranychus urticae. Mycoscience 2017;58:204-12. https://doi.org/10.1016/j.myc.2017.02.002
  4. Lacey LA, Frutos R, Kaya HK, Vail P. Insect pathogens as biological control agents: Do they have a future? Biol Control 2001;21:230-48. https://doi.org/10.1006/bcon.2001.0938
  5. de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 2007;43:237-56. https://doi.org/10.1016/j.biocontrol.2007.08.001
  6. Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzon A, Ownley BH, et al. Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2009;2:149-59. https://doi.org/10.1016/j.funeco.2009.05.001
  7. Ownley BH, Gwinn KD, Vega FE. Endophytic fungal entomopathogens with activity against plant pathogens: ecology and evolution. In: Roy HE, Vega FE, Chandler D, Goettel MS, Pell J, Wajnberg E, editors. The ecology of fungal entomopathogens. Dordrecht: Springer; 2009. p. 113-28.
  8. Yun HG, Kim DJ, Gwak WS, Shin TY, Woo SD. Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology 2017;45:192-8. https://doi.org/10.5941/MYCO.2017.45.3.192
  9. Yun HG, Kim DJ, Lee JH, Ma JI, Gwak WS, Woo SD. Comparative evaluation of conidia, blastospores and culture filtrates from entomopathogenic fungi against Tetranychus urticae. Int J Indust Entomol 2017;35:58-62.
  10. Yoon HG, Shin TY, Yu MR, Lee WW, Ko SH, Bae SM, Choi JB, Woo SD. Characterization of entomopathogenic fungus from Trialeurodes vaporariorum and evaluation as insecticide. Korean J Microbiol 2013;49:64-70. https://doi.org/10.7845/kjm.2013.006
  11. Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J. Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 2008;98:256-61. https://doi.org/10.1016/j.jip.2008.01.009
  12. Shin TY, Bae SM, Woo SD. Screening and characterization of antimicrobial substances originated from entomopathogenic fungi. J Asia Pac Entomol 2016;19:1053-9. https://doi.org/10.1016/j.aspen.2016.09.008
  13. Jackson MA, Payne AR, Odelson DA. Liquid-culture production of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus using portable fermentation equipment. J Ind Microbiol Biotechnol 2004;31:149-54. https://doi.org/10.1007/s10295-004-0127-8
  14. Jackson MA, Mcguire MR, Lacey LA, Wraight SP. Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycol Res 1997;101:35-41. https://doi.org/10.1017/S0953756296002067
  15. Vega FE, Jackson MA, McGuire MR. Germination of conidia and blastospores of Paecilomyces fumosoroseus on the cuticle of the silverleaf whitefly, Bemisia argentifolii. Mycopathologia 1999;147:33-5. https://doi.org/10.1023/A:1007011801491
  16. Vega FE, Jackson MA, Mercadier G, Poprawski TJ. The impact of nutrition on spore yields for various fungal entomopathogens in liquid culture. World J Microbiol Biotechnol 2003;19:363-8. https://doi.org/10.1023/A:1023924304456
  17. Campos RA, Arruda W, Boldo JT, da Silva MV, de Barros NM, de Azevedo JL, Schrank A, Vainstein MH. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr Microbiol 2005;50:257-61. https://doi.org/10.1007/s00284-004-4460-y
  18. Drummond J, Heale JB, Gillespie AT. Germination and effect of reduced humidity on expression of pathogenicity in Verticillium lecanii against the glasshouse whitefly Trialeurodes vaporariorum. Ann Appl Biol 1987;111:193-201. https://doi.org/10.1111/j.1744-7348.1987.tb01446.x
  19. Jandricic SE, Filotas M, Sanderson JP, Wraight SP. Pathogenicity of conidia-based preparations of entomopathogenic fungi against the greenhouse pest aphids Myzus persicae, Aphis gossypii, and Aulacorthum solani (Hemiptera: Aphididae). J Invertebr Pathol 2014;118:34-46. https://doi.org/10.1016/j.jip.2014.02.003
  20. Kim JJ, Goettel MS, Gillespie DR. Potential of Lecanicillium species for dual microbial control of aphids and the cucumber powdery mildew fungus, Sphaerotheca fuliginea. Biol Control 2007;40:327-32. https://doi.org/10.1016/j.biocontrol.2006.12.002
  21. Lozano-Tovar MD, Ortiz-Urquiza A, Garrido-Jurado I, Trapero-Casas A, Quesada-Moraga E. Assessment of entomopathogenic fungi and their extracts against a soil-dwelling pest and soil-borne pathogens of olive. Biol Control 2013;67:409-20. https://doi.org/10.1016/j.biocontrol.2013.09.006