DOI QR코드

DOI QR Code

Fast Motion Estimation Algorithm using Selection of Candidates and Stability of Optimal Candidates

후보 선별과 최적후보 안정성을 이용한 고속 움직임 예측 알고리즘

  • Kim, Jong Nam (Dept. of IT Conv.&App. Engineering, Pukyong National University)
  • 김종남 (부경대학교 IT융합응용공학과)
  • Received : 2018.06.30
  • Accepted : 2018.08.14
  • Published : 2018.09.30

Abstract

In this paper, we propose a fast motion estimation algorithm which is important in video encoding. So many fast motion estimation algorithms have been published for improving prediction quality and computational reduction. In the paper, we propose an algorithm that reduces unnecessary computation, while almost keeping prediction quality compared with the full search algorithm. The proposed algorithm calculates the sum of partial block matching error for each candidate, selects the candidates for the next step, compares the stability of optimal candidates with minimum error, and finds optimal motion vectors by determining the progress of the next step. By doing that, we can find the minimum error point as soon as possible and obtain fast computational speed by reducing unnecessary computations. Additionally, the proposed algorithm can be used with conventional fast motion estimation algorithms and prove it in the experimental results.

본 논문에서는 비디오 부호화에서 중요한 고속 움직임 예측 알고리즘을 제안한다. 기존의 전영역 탐색 방법의 많은 계산량으로 인하여 예측화질향상과 연산량 감축을 위한 연구가 진행되어 왔으며, 본 논문에서는 전영역 탐색기반의 방법과 비교하여 예측화질은 거의 유지하면서 무의미한 계산량을 줄이는 방법을 제안한다. 제안하는 알고리즘은 각 후보 지점에 대하여 부분 블록 에러 합을 계산하고, 이에 따라 다음 단계에서 진행할 후보들을 선별하고, 최소 에러지점의 최적후보에 대해 단계별 안정성을 비교 판단하여 그 다음 단계의 진행 여부를 결정함으로써 최적의 움직임 벡터를 계산한다. 이를 통하여 전체의 최소블록매칭에러를 갖는 지점을 조기에 발견하고, 불필요한 후보들을 더 빨리 제거함으로써 불필요한 계산량을 줄이고 계산속도 향상을 얻을 수 있다. 또한 제안하는 알고리즘은 단독으로 사용할 뿐만 아니라 기존의 고속 알고리즘들과 결합하여 사용해도 예측화질은 거의 유지하면서 계산량을 대폭 줄일 수 있으며, 실험결과에서 이를 검증한다.

Keywords

References

  1. T. Tan, R. Weerakkody, and G. Sullivan, "Video quality evaluation methodology and verification testing of HEVC compression performance," IEEE Transactions on Circuits System & Video Technology, Vol. 26, No. 1, pp. 76-90, 2016. https://doi.org/10.1109/TCSVT.2015.2477916
  2. T. Lee, Y. Chan, and W. Siu, "Adaptive search range by neighbouring depth intensity weighted sum for HEVC texture coding," IEE Electron. Letters, Vol. 52 No. 12, pp. 1018-1020, 2016. https://doi.org/10.1049/el.2016.0261
  3. H. Choi, J. Kim, S. Jung, "Fast Motion Estimation Algorithm using Importance of Search Range and Adaptive Matching Criterion," The Journal of Korea Institute of Signal Processing and Systems, Vol. 16, No. 4, pp. 129-133, 2015.
  4. Z. Pan, j. Lei, Y. Zhang, X. Sun, and S. Kwong, "Fast motion estimation based on content property for low-complexity H.265/HEVC encoder," IEEE Transactions on Broadcasting, Vol. 63, No. 3, pp. 675-684, 2016.
  5. P. Bhalge and S. Amdani, "Modified hexagonal search for motion estimation", Proceeding of International Conference on Intelligent Compuuting and Control Systems, pp. 94-96, 2017.
  6. N. Alnajdawi, M , Alnajdawi, and S. Tedmori, "Employing a novel cross-diamond search in a modified hierarchical search motion estimation algorithm for video compression," Elsevier Information Sciences, Vol. 268, pp. 425-435, 2014. https://doi.org/10.1016/j.ins.2013.08.009
  7. A. Paramkusam, "Efficient motion estimation algorithm on the layers," IEE Electron. Letters, pp. 467-468, 2017.
  8. N. Vayalil, M. Paul, and Y. Kong, " A novel angle-restricted test zone search algorithm for performance improvement of HEVC", Proceeding of IEEE International Conference on Image Processing, pp. 6-10, 2017.
  9. X.Q. Gao, C.J. Duanmu, and C.R. Zou, "A Multilevel Successive Elimination Algorithm for Block Matching Motion Estimation," IEEE Transactions on Image Processing, Vol. 9, No. 3, pp. 501-504, 2000. https://doi.org/10.1109/83.826786
  10. J. Kim, S. Byun, Y. Kim, and B. Ahn, "Fast Full Search Motion Estimation Algorithm Using Early Detection of Impossible Candidate Vectors," IEEE Transactions on Signal Processing, Vol. 50, No. 9, pp. 2355-2365, 2002. https://doi.org/10.1109/TSP.2002.801888
  11. H.264/AVC reference software, http://iphome.hhi.de/suehring/tml/download/old_jm/
  12. S. Jin and H. Lee, "Fast Partial Distortion Elimination Algorithm based on Hadamard Probability Model," IEE Electron. Letters, Vol. 44, No. 1, pp. 17-19, 2008. https://doi.org/10.1049/el:20082872