DOI QR코드

DOI QR Code

Augmented Reality System in Real Space using Mobile Projection

이동 투사를 통한 실제 공간에서의 증강현실 시스템

  • Kim, Moran (Center of Human-centered Interaction for Coexistence) ;
  • Kim, Jun-Sik (Center for Intelligent and Interactive Robotics, KIST)
  • 김모란 ((재)실감교류인체감응솔루션연구단) ;
  • 김준식 (한국과학기술연구원 지능로봇연구단)
  • Received : 2018.05.11
  • Accepted : 2018.09.14
  • Published : 2018.09.30

Abstract

In this paper, we introduce an integrated augmented reality system using a small camera and a projector. We extract three-dimensional information of an object with a small portable camera and a projector by using a structured light system. We develop the concept of the virtual camera to generalize the projection method so that the image can be projected at a desired position with only the mesh of the object to be projected without computing the mapping between specific point sets. Therefore, it is possible to project not only simple planes but also complex curved surfaces to desired positions without complicated geometric calculation. Based on a robot with a small camera and a projector, it will largely explain the projector-camera system calibration, the calculation of the position of the recognized object, and the image projection method using the virtual camera concept.

본 논문에서는 소형 카메라와 프로젝터를 이용한 투사형 통합 증강현실 시스템에 대해 소개한다. 물체 인식을 위해 특징점 추출 알고리즘을 사용하며 물체의 깊이 정보는 구조광 방식을 이용해 추출한다. 인식된 물체에 대한 정보를 3차원 공간에 투사할 때, 가상카메라 개념을 이용한 투사 방법을 개발해 특정 점 집합간의 매핑(mapping)을 계산할 필요 없이 투사하고자 하는 대상의 메쉬(mesh)만을 가지고 원하는 위치에 영상을 투사할 수 있도록 일반화 시켰다. 따라서 단순한 평면뿐만 아니라 복잡한 곡면에 대해서도 복잡한 기하계산 없이 원하는 위치에 투사할 수 있게 되었다. 소개되는 내용에서는 소형 카메라와 프로젝터를 탑재한 로봇을 바탕으로 크게 프로젝터-카메라 시스템 캘리브레이션, 인식된 물체의 위치 계산 그리고 가상카메라 개념을 이용한 영상 투사 방법에 대해 설명한다.

Keywords

References

  1. H.L. Chi, S.C. Kang, and X. Wang, "Research trends and opportunities of augmented reality applications in architecture, engineering, and construction," Automation in Construction, Vol 33, pp.116-122, 2013. https://doi.org/10.1016/j.autcon.2012.12.017
  2. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, "Recent Advances in Augmented Reality," IEEE Computer Graphics and Applications, pp.34-37, 2001.
  3. M. Pollefeys, R. Koch and L. Van Gool "Self-Calibration and Metric Reconstruction in Spite of Varying and Unknown Internal Camera Parameters," International Journal of Computer Vision, Vol.32, No.1, pp.7-25, 1999 https://doi.org/10.1023/A:1008109111715
  4. E. Rosten, and T. Drummond, "Machine learning for high-speed corner detection," European conference on computer vision, Springer, Berlin, Heidelberg, pp. 430-443, 2006.
  5. D.G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," International Journal of Computer Vision, Vol 60, No 2, pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  6. C. Rocchini, P, Cignoni, C. Montani, P. Pingi, and R. Scopigno,"A low cost 3D scanner based on structured light," Computer Graphics Forum, Vol. 20, No.3, pp.209-308, 2001.
  7. F. Moreno-Noguer, V. Lepetit and P. Fua, "EPnP: An Accurate O(n) Solution to the PnP Problem," International Journal of Computer Vision, Vol. 81, No. 2, pp. 155-166, 2009. https://doi.org/10.1007/s11263-008-0152-6
  8. M.R, Kim, and J.-S Kim, "An Automatic Projector-Camera Calibration Method using an Auxiliary RGB-D Camera," Image Processing and Image Understanding, 2017.
  9. Y. Xu, and D. Aliaga, "Robust pixel classification for 3D modeling with structured light," Proceeding of Conference on Graphics Interface, pp. 233-240, 2007.
  10. S. Nayar, G. Krishnan, M. Grossberg, and R. Raskar, "Fast separation of direct and global components of a scene using high frequency illumination," ACM Transactions on Graphics (TOG), Vol.25, No.3. pp.935-944, 2006. https://doi.org/10.1145/1141911.1141977