DOI QR코드

DOI QR Code

두경부암에서 방사면역치료의 역할

Radioimmunotherapy in Head and Neck Cancer

  • Choi, Ik Joon (Department of Otorhinolaryngology-Head and Neck Surgery, Korea Cancer Center Hospital)
  • 투고 : 2018.10.27
  • 심사 : 2018.11.19
  • 발행 : 2018.12.25

초록

Radioimmunotherapy (RIT) is a therapy that takes advantage of the "cross-fire" effect of emitted radiation by radionuclides conjugated to tumor-directed monoclonal antibodies (mAb) (including those fragments) or peptides. While RIT has been successfully employed for the treatment of lymphoma, mostly with radiolabeled antibodies against CD20 [$^{90}yttrium$ ($^{90}Y$)-ibritumomab tiuxetan; $Zevalin^{(R)}$ and $^{131}iodine$ ($^{131}I)-tositumomab$; $Bexxar^{(R)}$], its use in solid tumors is more challenging, so far. Immuno-PET, a tool for tracking and quantification of mAbs with PET in vivo, is an exciting novel option to improve diagnostic imaging and guide mAb-based therapy. RIT in solid tumors including head and neck cancer may be an alternative treatment with advances in various biological, chemical, and treatment procedures, and it may help to reduce unnecessary exposure and enhance the therapeutic efficacy. Also, immuno-PET based on RIT might play an important role in cancer staging, in patients or targets selection of targeted therapeutics and in monitoring the response of targeted therapeutics as precision medicine. In this review, fundamentals of RIT/immune-PET and current knowledge of the preclinical/clinical trials in RIT for solid tumor including head and neck cancer are reviewed.

키워드

참고문헌

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61(2):69-90. https://doi.org/10.3322/caac.20107
  2. Dassonville O, Formento JL, Francoual M, Ramaioli A, Santini J, Schneider M, et al. Expression of epidermal growth factor receptor and survival in upper aerodigestive tract cancer. J Clin Oncol 1993; 11(10):1873-8. https://doi.org/10.1200/JCO.1993.11.10.1873
  3. Rubin Grandis J, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 1998;90(11):824-32. https://doi.org/10.1093/jnci/90.11.824
  4. Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004;22(1):77-85. https://doi.org/10.1200/JCO.2004.06.075
  5. Vermorken JB, Trigo J, Hitt R, Koralewski P, Diaz-Rubio E, Rolland F, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol 2007;25(16):2171-7. https://doi.org/10.1200/JCO.2006.06.7447
  6. Bernier J, Bentzen SM, Vermorken JB. Molecular therapy in head and neck oncology. Nat Rev Clin Oncol 2009;6(5):266-77. https://doi.org/10.1038/nrclinonc.2009.40
  7. Boeckx C, Baay M, Wouters A, Specenier P, Vermorken JB, Peeters M, et al. Anti-epidermal growth factor receptor therapy in head and neck squamous cell carcinoma: focus on potential molecular mechanisms of drug resistance. Oncologist 2013;18(7):850-64. https://doi.org/10.1634/theoncologist.2013-0013
  8. Niu G, Sun X, Cao Q, Courter D, Koong A, Le QT, et al. Cetuximabbased immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin Cancer Res 2010;16(7):2095-105. https://doi.org/10.1158/1078-0432.CCR-09-2495
  9. Liu Z, Ma T, Liu H, Jin Z, Sun X, Zhao H, et al. 177Lu-labeled antibodies for EGFR-targeted SPECT/CT imaging and radioimmunotherapy in a preclinical head and neck carcinoma model. Mol Pharm 2014;11(3):800-7. https://doi.org/10.1021/mp4005047
  10. Sihver W, Pietzsch J, Krause M, Baumann M, Steinbach J, Pietzsch HJ. Radiolabeled cetuximab conjugates for EGFR targeted cancer diagnostics and therapy. Pharmaceuticals (Basel) 2014;7(3):311-38. https://doi.org/10.3390/ph7030311
  11. Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 2007;6(5):349-56. https://doi.org/10.1038/nrd2241
  12. Hatano K, Araki H, Sakai M, Kodama T, Tohyama N, Kawachi T, et al. Current status of intensity-modulated radiation therapy (IMRT). Int J Clin Oncol 2007;12(6):408-15. https://doi.org/10.1007/s10147-007-0703-9
  13. Green N, Kern W. The clinical course and treatment results of patients with postresection locally recurrent lung cancer. Cancer 1978;42(5):2478-82. https://doi.org/10.1002/1097-0142(197811)42:5<2478::AID-CNCR2820420551>3.0.CO;2-Q
  14. Laperriere N, Zuraw L, Cairncross G; Cancer Care Ontario Practice Guidelines Initiative Neuro-Oncology Disease Site Group. Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol 2002;64(3):259-73. https://doi.org/10.1016/S0167-8140(02)00078-6
  15. Dawson LA, Lawrence TS. The role of radiotherapy in the treatment of liver metastases. Cancer J 2004;10(2):139-44. https://doi.org/10.1097/00130404-200403000-00009
  16. Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J Nucl Med 2010;51(2):311-28. https://doi.org/10.2967/jnumed.108.058651
  17. Song H, Sgouros G. Radioimmunotherapy of solid tumor: searching for the right target. Curr Drug Deliv 2011;8(1):26-44. https://doi.org/10.2174/156720111793663651
  18. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009;360(14):1408-17. https://doi.org/10.1056/NEJMoa0805019
  19. Wygoda Z, Kula D, Bierzynska-Macyszyn G, Larysz D, Jarzab M, Wlaszczuk P, et al. Use of monoclonal anti-EGFR antibody in the radioimmunotherapy of malignant gliomas in the context of EGFR expression in grade III and IV tumors. Hybridoma (Larchmt) 2006;25(3):125-32. https://doi.org/10.1089/hyb.2006.25.125
  20. Goldenberg DM, Rossi EA, Sharkey RM, McBride WJ, Chang CH. Multifunctional antibodies by the Dock-and-Lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med 2008;49(1):158-63. https://doi.org/10.2967/jnumed.107.046185
  21. Robert F, Ezekiel MP, Spencer SA, Meredith RF, Bonner JA, Khazaeli MB, et al. Phase I study of anti--epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 2001;19(13):3234-43. https://doi.org/10.1200/JCO.2001.19.13.3234
  22. Dattatreya S, Goswami C. Cetuximab plus radiotherapy in patients with unresectable locally advanced squamous cell carcinoma of head and neck region--a open labelled single arm phase II study. Indian J Cancer 2011;48(2):154-7. https://doi.org/10.4103/0019-509X.82873
  23. Huang J, Cui L, Wang F, Liu Z. PET tracers based on (86)Y. Curr Radiopharm 2011;4(2):122-30. https://doi.org/10.2174/1874471011104020122
  24. Kawashima H. Radioimmunotherapy: a specific treatment protocol for cancer by cytotoxic redioisotopes conjugated to antibodies. ScientificWorldJournal 2014;2014:492061.
  25. Song IH, Noh Y, Kwon J, Jung JH, Lee BC, Kim KI, et al. Immuno-PET imaging based radioimmunotherapy in head and neck squamous cell carcinoma model. Oncotarget 2017;8(54):92090-105.
  26. Verel I, Visser GW, Boerman OC, van Eerd JE, Finn R, Boellaard R, et al. Long-lived positron emitters zirconium-89 and iodine-124 for scouting of therapeutic radioimmunoconjugates with PET. Cancer Biother Radiopharm 2003;18(4):655-61. https://doi.org/10.1089/108497803322287745
  27. Lee FT, Hall C, Rigopoulos A, Zweit J, Pathmaraj K, O'Keefe GJ, et al. Immuno-PET of human colon xenograft-bearing BALB/c nude mice using 124I-CDR-grafted humanized A33 monoclonal antibody. J Nucl Med 2001;42(5):764-9.
  28. Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003;44(12):1962-9.
  29. Jain M, Batra S. Genetically engineered antibody fragments and PET imaging: a new era of radioimmunodiagnosis. J Nucl Med 2003;44(12):1970-2.
  30. Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65(4):1471-8. https://doi.org/10.1158/0008-5472.CAN-04-2008
  31. Verel I, Visser GW, Vosjan MJ, Finn R, Boellaard R, van Dongen GA. High quality 124I-labelled monoclonal antibodies for use as PET scouting agents prior to 131I-radioimmunotherapy. Eur J Nucl Med Mol Imaging 2004;31(12):1645-52. https://doi.org/10.1007/s00259-004-1632-8
  32. Jayson GC, Zweit J, Jackson A, Mulatero C, Julyan P, Ranson M, et al. Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst 2002;94(19):1484-93. https://doi.org/10.1093/jnci/94.19.1484
  33. Divgi CR, Pandit-Taskar N, Jungbluth AA, Reuter VE, Gonen M, Ruan S, et al. Preoperative characterisation of clear-cell renal carcinoma using iodine-124-labelled antibody chimeric G250 (124I-cG250) and PET in patients with renal masses: a phase I trial. Lancet Oncol 2007;8(4):304-10. https://doi.org/10.1016/S1470-2045(07)70044-X
  34. Perk LR, Visser GW, Vosjan MJ, Stigter-van Walsum M, Tijink BM, Leemans CR, et al. (89)Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals (90)Y and (177)Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 2005;46(11):1898-906.
  35. Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJ, Visser GW, Zijlstra JM, et al. Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 2006;33(11):1337-45. https://doi.org/10.1007/s00259-006-0160-0
  36. Nagengast WB, de Vries EG, Hospers GA, Mulder NH, de Jong JR, Hollema H, et al. In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 2007;48(8):1313-9. https://doi.org/10.2967/jnumed.107.041301
  37. Dijkers E, Lub-de Hooge MN, Kosterink JG, Jager PL, Brouwers AH, Perk LR, et al. Characterization of 89Zr-trastuzumab for clinical HER2 immunoPET imaging. J Clin Oncol 2007;25(suppl 18):3508.
  38. Verel I, Visser GW, Boellaard R, Boerman OC, van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med 2003;44(10):1663-70.
  39. Collingridge DR, Carroll VA, Glaser M, Aboagye EO, Osman S, Hutchinson OC, et al. The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res 2002;62(20):5912-9.
  40. Cai W, Chen K, Mohamedali KA, Cao Q, Gambhir SS, Rosenblum MG, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47(12):2048-56.
  41. Borjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, et al. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res 2006;12(7 Pt 1):2133-40. https://doi.org/10.1158/1078-0432.CCR-05-2137
  42. Zalutsky MR. Potential of immuno-positron emission tomography for tumor imaging and immunotherapy planning. Clin Cancer Res 2006;12(7 Pt 1):1958-60. https://doi.org/10.1158/1078-0432.CCR-06-0405