DOI QR코드

DOI QR Code

Extracellular Vesicles in Psychiatry Research in the Context of RDoC Criteria

  • Ilgin, Can (Department of Public Health, Marmara University School of Medicine) ;
  • Topuzoglu, Ahmet (Department of Public Health, Marmara University School of Medicine)
  • Received : 2018.07.27
  • Accepted : 2018.09.17
  • Published : 2018.11.30

Abstract

The analysis of extracellular vesicles has been accelerated because of the technological advancements in omics methods in recent decades. Extracellular vesicles provide multifaceted information regarding the functional status of the cells. This information would be critical in case of central nervous system cells, which are confined in a relatively sealed biological compartment. This obstacle is more dramatic in psychiatric disorders since their diagnosis primarily depend on the symptoms and signs of the patients. In this paper, we reviewed this rapidly advancing field by discussing definition of extracellular vesicles, their biogenesis and potential use as clinical biomarkers. Then we focused on their potential use in psychiatric disorders in the context of diagnosis and treatment of these disorders. Finally, we tried to combine the RDoC (Research Domain Criteria) with the use of extracellular vesicles in psychiatry research and practice. This review may offer new insights in both basic and translational research focusing on psychiatric disorders.

Keywords

References

  1. Conigliaro A, Fontana S, Raimondo S, Alessandro R. Exosomes: nanocarriers of biological messages. Adv Exp Med Biol 2017;998:23-43.
  2. Paolicelli RC, Bergamini G, Rajendran L. Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 2018 [Epub ahead of print].
  3. Tietje A, Maron KN, Wei Y, Feliciano DM. Cerebrospinal fluid extracellular vesicles undergo age dependent declines and contain known and novel non-coding RNAs. PLoS ONE 2014;9:e113116. https://doi.org/10.1371/journal.pone.0113116
  4. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2013;2.
  5. Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 2015;40:41-51. https://doi.org/10.1016/j.semcdb.2015.02.010
  6. Huotari J, Helenius A. Endosome maturation. EMBO J 2011;30:3481-3500. https://doi.org/10.1038/emboj.2011.286
  7. Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 2016;6:287-296. https://doi.org/10.1016/j.apsb.2016.02.001
  8. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 2013;113:1-11. https://doi.org/10.1007/s11060-013-1084-8
  9. Rajagopal C, Harikumar KB. The origin and functions of exosomes in cancer. Front Oncol 2018;8:66. https://doi.org/10.3389/fonc.2018.00066
  10. Xu W, Yang Z, Lu N. From pathogenesis to clinical application: insights into exosomes as transfer vectors in cancer. J Exp Clin Cancer Res 2016;35:156. https://doi.org/10.1186/s13046-016-0429-5
  11. Lobb RJ, Becker M, Wen Wen S, Wong CSF, Wiegmans AP, Leimgruber A, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 2015;4:27031. https://doi.org/10.3402/jev.v4.27031
  12. Theodoraki MN, Hoffmann TK, Whiteside TL. Separation of plasmaderived exosomes into CD3((+)) and CD3((-)) fractions allows for association of immune cell and tumour cell markers with disease activity in HNSCC patients. Clin Exp Immunol 2018;192:271-283. https://doi.org/10.1111/cei.13113
  13. Carpintero-Fernandez P, Fafian-Labora J, O'Loghlen A. Technical advances to study extracellular vesicles. Front Mol Biosci 2017;4:79. https://doi.org/10.3389/fmolb.2017.00079
  14. Banfer S, Schneider D, Dewes J, Strauss MT, Freibert SA, Heimerl T, et al. Molecular mechanism to recruit galectin-3 into multivesicular bodies for polarized exosomal secretion. Proc Natl Acad Sci U S A 2018;115:E4396-E4405. https://doi.org/10.1073/pnas.1718921115
  15. Merchant ML, Rood IM, Deegens JKJ, Klein JB. Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 2017;13:731-749.
  16. Bekelis K, Radwan TA, Desai A, Roberts DW. Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnostic yield, and safety. J Neurosurg 2012;116:1002-1006. https://doi.org/10.3171/2012.1.JNS111746
  17. Albrecht DS, Granziera C, Hooker JM, Loggia ML. In Vivo Imaging of Human Neuroinflammation. ACS Chem Neurosci 2016;7:470-483. https://doi.org/10.1021/acschemneuro.6b00056
  18. Fabi A, Vidiri A. Defining the endpoints: how to measure the efficacy of drugs that are active against central nervous system metastases. Transl Lung Cancer Res 2016;5:637-646. https://doi.org/10.21037/tlcr.2016.11.02
  19. Ferezou I MF, Petersen CCH. Imaging the Brain in Action: Real-Time Voltage- Sensitive Dye Imaging of Sensorimotor Cortex of Awake Behaving Mice. In: RD F, Editor. In Vivo Optical Imaging of Brain Function 2nd Edition. Florida: CRC Press/Taylor & Francis, 2009, p.171-192.
  20. Arboix A, Obach V, Sanchez MJ, Massons J. Complementary examinations other than neuroimaging and neurosonology in acute stroke. World J Clini Cases 2017;5:191-202. https://doi.org/10.12998/wjcc.v5.i6.191
  21. Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K. The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks. Philos Trans R Soc Lond B Biol Sci 2015;370.
  22. Doherty CM, Forbes RB. Diagnostic lumbar puncture. Ulster Med J 2014;83:93-102.
  23. Di Terlizzi R, Platt S. The function, composition and analysis of cerebrospinal fluid in companion animals: part I-function and composition. Vet J 2006;172:422-431. https://doi.org/10.1016/j.tvjl.2005.07.021
  24. Narahari A, Hussain M, Sreeram V. MicroRNAs as biomarkers for psychiatric conditions: a review of current research. Innov Clin Neurosci 2017;14:53-55.
  25. Andras IE, Toborek M. Extracellular vesicles of the blood-brain barrier. Tissue Barriers 2016;4:e1131804. https://doi.org/10.1080/21688370.2015.1131804
  26. Matsumoto J, Stewart T, Banks WA, Zhang J. The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr Pharm Des 2017;23:6206-6014.
  27. Smalheiser NR. Do neural cells communicate with endothelial cells via secretory exosomes and microvesicles? Cardiovasc Psychiatry Neurol 2009;2009:383086.
  28. Mustapic M, Eitan E, Werner JK, Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci 2017;11:278. https://doi.org/10.3389/fnins.2017.00278
  29. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, et al. Exosomes are released by cultured cortical neurones. Mol Cel Neurosci 2006;31:642-648. https://doi.org/10.1016/j.mcn.2005.12.003
  30. Kanninen KM, Bister N, Koistinaho J, Malm T. Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta 2016;1862:403-410. https://doi.org/10.1016/j.bbadis.2015.09.020
  31. Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 2005;175:2237-2243. https://doi.org/10.4049/jimmunol.175.4.2237
  32. Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C, Mobius W, Berger H, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteomics Clin Appl 2007;1:1446-1461. https://doi.org/10.1002/prca.200700522
  33. Gallart-Palau X, Serra A, Sze SK. Enrichment of extracellular vesicles from tissues of the central nervous system by PROSPR. Mol Neurodegener 2016;11:41. https://doi.org/10.1186/s13024-016-0108-1
  34. Raghavan V. Role of exosomes in psychiatric disorders. Asian J Psychiatr 2017;28:78-79. https://doi.org/10.1016/j.ajp.2017.03.032
  35. Masdeu JC. Neuroimaging in psychiatric disorders. Neurotherapeutics 2011;8:93-102. https://doi.org/10.1007/s13311-010-0006-0
  36. The Lancet Psychiatry. Blood biomarkers in psychiatry. Lancet Psychiatry 2016;3:693. https://doi.org/10.1016/S2215-0366(16)30176-6
  37. Hiemke C. Clinical utility of drug measurement and pharmacokinetics: therapeutic drug monitoring in psychiatry. Eur J Clin Pharmacol 2008;64:159-166. https://doi.org/10.1007/s00228-007-0430-1
  38. Banigan MG, Kao PF, Kozubek JA, Winslow AR, Medina J, Costa J, et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS One 2013;8:e48814. https://doi.org/10.1371/journal.pone.0048814
  39. Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015;9:476.
  40. Choi JL, Kao PF, Itriago E, Zhan Y, Kozubek JA, Hoss AG, et al. miR-149 and miR-29c as candidates for bipolar disorder biomarkers. Am J Med Genet B Neuropsychiatr Genet 2017;174:315-323. https://doi.org/10.1002/ajmg.b.32518
  41. Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci 2014;369.
  42. Sawa A. Multifaceted Translational Approach to Major Mental Illness. In: Nakao K, Minato N, Uemoto S, Editors. Innovative Medicine: Basic Research and Development. Tokyo: Springer, 2015, p.157-163.
  43. Jacob KS. Depression: a major public health problem in need of a multi-sectoral response. Indian J Med Res2012;136:537-539.
  44. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 2015;72:603-611. https://doi.org/10.1001/jamapsychiatry.2015.0071
  45. Zhang HF, Mellor D, Peng DH. Neuroimaging genomic studies in major depressive disorder: a systematic review. CNS Neurosci Ther 2018 [Epub ahead of print].
  46. Woody ML, Gibb BE. Integrating NIMH Research Domain Criteria (RDoC) into depression research. Curr Opin Psychol 2015;4:6-12. https://doi.org/10.1016/j.copsyc.2015.01.004
  47. Singhal G, Baune BT. Microglia: an Interface between the loss of neuroplasticity and depression. Front Cell Neurosci 2017;11:270.
  48. Kim YK, Na KS. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2016;70:117-126. https://doi.org/10.1016/j.pnpbp.2016.03.009
  49. Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016;64:277-284. https://doi.org/10.1016/j.pnpbp.2015.06.008
  50. Lopez JP, Kos A, Turecki G. Major depression and its treatment: microRNAs as peripheral biomarkers of diagnosis and treatment response. Curr Opin Psychiatry 2018;31:7-16. https://doi.org/10.1097/YCO.0000000000000379
  51. Woelfer M, Kasties V, Kahlfuss S, Walter M. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder. Neuroscience 2018 [Epub ahead of print].
  52. Ogasawara K, Nakamura Y, Kimura H, Aleksic B, Ozaki N. Issues on the diagnosis and etiopathogenesis of mood disorders: reconsidering DSM-5. J Neural Transm (Vienna) 2018;125:211-222. https://doi.org/10.1007/s00702-017-1828-2
  53. Nusslock R, Alloy LB. Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective. J Affect Disord 2017;216:3-16. https://doi.org/10.1016/j.jad.2017.02.001
  54. Cosgrove VE, Kelsoe JR, Suppes T. Toward a valid animal model of bipolar disorder: how the research domain criteria help bridge the clinical- basic science divide. Biol Psychiatry 2016;79:62-70. https://doi.org/10.1016/j.biopsych.2015.09.002
  55. Rolls ET. Limbic systems for emotion and for memory, but no single limbic system. Cortex 2015;62:119-157. https://doi.org/10.1016/j.cortex.2013.12.005
  56. Ikemoto S, Yang C, Tan A. Basal ganglia circuit loops, dopamine and motivation: a review and enquiry. Behavioural brain research. Behav Brain Res 2015;290:17-31. https://doi.org/10.1016/j.bbr.2015.04.018
  57. Rong H, Liu TB, Yang KJ, Yang HC, Wu DH, Liao CP, et al. MicroRNA-134 plasma levels before and after treatment for bipolar mania. J Psychiatr Res 2011;45:92-95. https://doi.org/10.1016/j.jpsychires.2010.04.028
  58. Luarte A, Cisternas P, Caviedes A, Batiz LF, Lafourcade C, Wyneken U, et al. Astrocytes at the hub of the stress response: potential modulation of neurogenesis by miRNAs in astrocyte-derived exosomes. Stem Cells Int 2017;2017:1719050.
  59. Picchioni MM, Murray RM. Schizophrenia. BMJ 2007;335:91-95.
  60. Debnath M, Venkatasubramanian G, Berk M. Fetal programming of schizophrenia: select mechanisms. Neurosci Biobehav Rev 2015;49:90-104. https://doi.org/10.1016/j.neubiorev.2014.12.003
  61. Patel KR, Cherian J, Gohil K, Atkinson D. Schizophrenia: overview and treatment options. P T 2014;39:638-645.
  62. Faludi G, Mirnics K. Synaptic changes in the brain of subjects with schizophrenia. Int J Dev Neurosci 2011;29:305-309. https://doi.org/10.1016/j.ijdevneu.2011.02.013
  63. Barch DM, Pagliaccio D, Luking K. Mechanisms Underlying Motivational Deficits in Psychopathology: Similarities and Differences in Depression and Schizophrenia. In: Simpson EH, Balsam PD, Editors. Behavioral Neuroscience of Motivation. Cham: Springer International Publishing, 2016, p. 411-449.
  64. Ford JM, Morris SE, Hoffman RE, Sommer I, Waters F, McCarthy-Jones S, et al. Studying Hallucinations Within the NIMH RDoC Framework. Schizophr Bull 2014;40(Suppl 4):S295-S304. https://doi.org/10.1093/schbul/sbu011
  65. Nascimento Juliana M, Garcia S, Saia-Cereda Veronica M, Santana Aline G, Brandao-Teles C, Zuccoli Giuliana S, et al. Proteomics and molecular tools for unveiling missing links in the biochemical understanding of schizophrenia. Proteomics Clin Appl 2016;10:1148-1158. https://doi.org/10.1002/prca.201600021
  66. Suire CN, Eitan E, Shaffer NC, Tian Q, Studenski S, Mattson MP, et al. Walking speed decline in older adults is associated with elevated pro-BDNF in plasma extracellular vesicles. Exp Gerontol 2017;98:209-216. https://doi.org/10.1016/j.exger.2017.08.024
  67. Pituch KC, Moyano AL, Lopez-Rosas A, Marottoli FM, Li G, Hu C, et al. Dysfunction of platelet-derived growth factor receptor alpha (PDGFRalpha) represses the production of oligodendrocytes from arylsulfatase A-deficient multipotential neural precursor cells. J Biol Chem 2015;290:7040-7053. https://doi.org/10.1074/jbc.M115.636498
  68. Kumar K, Kumar A, Keegan RM, Deshmukh R. Recent advances in the neurobiology and neuropharmacology of Alzheimer's disease. Biomed Pharmacother 2018;98:297-307. https://doi.org/10.1016/j.biopha.2017.12.053
  69. Weller J, Budson A. Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res 2018;7. pii: F1000 Faculty Rev-1161.
  70. Craft S. The role of metabolic disorders in Alzheimer's disease and vascular dementia: two roads converged? Arch Neurol 2009;66:300-305.
  71. Giri M, Zhang M, Lu Y. Genes associated with Alzheimer's disease: an overview and current status. Clin Interv Aging 2016;11:665-681.
  72. Guedes JR, Lao T, Cardoso AL, El Khoury J. Roles of microglial and monocyte chemokines and their receptors in regulating Alzheimer's disease-associated amyloid-beta and Tau pathologies. Front Neurol 2018;9:549. https://doi.org/10.3389/fneur.2018.00549
  73. Lanctot KL, Amatniek J, Ancoli-Israel S, Arnold SE, Ballard C, Cohen-Mansfield J, et al. Neuropsychiatric signs and symptoms of Alzheimer's disease: New treatment paradigms. Alzheimers Dement (N Y) 2017;3:440-449.
  74. Xiao T, Zhang W, Jiao B, Pan C-Z, Liu X, Shen L. The role of exosomes in the pathogenesis of Alzheimer' disease. Transl Neurodegener 2017;6:3. https://doi.org/10.1186/s40035-017-0072-x
  75. Nhan HS, Chiang K, Koo EH. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol 2015;129:1-19. https://doi.org/10.1007/s00401-014-1347-2
  76. Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer's disease. Open Biol 2017;7.
  77. Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Alavi Naini SM, et al. What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun 2017;5:99. https://doi.org/10.1186/s40478-017-0488-7
  78. Yuyama K, Igarashi Y. Exosomes as carriers of Alzheimer's Amyloidss. Front Neurosci 2017;11:229. https://doi.org/10.3389/fnins.2017.00229
  79. Chen JJ, Zhao B, Zhao J, Li S. Potential roles of exosomal microRNAs as diagnostic biomarkers and therapeutic application in Alzheimer's disease. Neural Plasticity 2017;2017:7027380.

Cited by

  1. Brain Gene Expression Profiling of Individuals With Dual Diagnosis Who Died by Suicide vol.16, pp.2, 2018, https://doi.org/10.1080/15504263.2019.1692160
  2. Circulating Extracellular Vesicles: The Missing Link between Physical Exercise and Depression Management? vol.22, pp.2, 2021, https://doi.org/10.3390/ijms22020542
  3. Resilience to social stress: is it in the blood? vol.11, pp.10, 2021, https://doi.org/10.1002/2211-5463.13291