DOI QR코드

DOI QR Code

Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20(S)-protopanaxadiol: in vitro and in vivo evaluation studies

  • Kim, Ki-Taek (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Kim, Min-Hwan (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Park, Ju-Hwan (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Lee, Jae-Young (College of Pharmacy, Chungnam National University) ;
  • Cho, Hyun-Jong (College of Pharmacy, Kangwon National University) ;
  • Yoon, In-Soo (College of Pharmacy, Pusan National University) ;
  • Kim, Dae-Duk (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • Received : 2017.04.18
  • Accepted : 2017.07.14
  • Published : 2018.10.15

Abstract

Background: 20(S)-Protopanaxadiol (20S-PPD) is a fully deglycosylated ginsenoside metabolite and has potent dermal antiaging activity. However, because of its low aqueous solubility and large molecular size, a suitable formulation strategy is required to improve its solubility and skin permeability, thereby enhancing its skin deposition. Thus, we optimized microemulsion (ME)-based hydrogel (MEH) formulations for the topical delivery of 20S-PPD. Methods: MEs and MEHs were formulated and evaluated for their particle size distribution, morphology, drug loading capacity, and stability. Then, the deposition profiles of the selected 20S-PPD-loaded MEH formulation were studied using a hairless mouse skin model and Strat-M membrane as an artificial skin model. Results: A Carbopol-based MEH system of 20S-PPD was successfully prepared with a mean droplet size of 110 nm and narrow size distribution. The formulation was stable for 56 d, and its viscosity was high enough for its topical application. It significantly enhanced the in vitro and in vivo skin deposition of 20S-PPD with no influence on its systemic absorption in hairless mice. Notably, it was found that the Strat-M membrane provided skin deposition data well correlated to those obtained from the in vitro and in vivo mouse skin studies on 20S-PPD (correlation coefficient $r^2=0.929-0.947$). Conclusion: The MEH formulation developed in this study could serve as an effective topical delivery system for poorly soluble ginsenosides and their deglycosylated metabolites, including 20S-PPD.

Keywords

References

  1. Kim K. Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action. J Ginseng Res 2015;39:1-6. https://doi.org/10.1016/j.jgr.2014.10.006
  2. Han J, Lee E, Kim E, Yeom MH, Kwon O, Yoon TH, Lee TR, Kim K. Role of epidermal gamma delta T-cell-derived interleukin 13 in the skin-whitening effect of ginsenoside F1. Exp Dermatol 2014;23:860-2. https://doi.org/10.1111/exd.12531
  3. Wang L, Lu AP, Yu ZL, Wong RN, Bian ZX, Kwok HH, Yue PY, Zhou LM, Chen H, Xu M, et al. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1. AAPS PharmSciTech 2014;15:1252-62. https://doi.org/10.1208/s12249-014-0138-3
  4. Hong YH, Kim D, Hwang K, Yoo S, Han SY, Jeong S, Kim E, Jeong D, Yoon K, Kim S. Photoaging protective effects of BIOGF1K, a compound K-rich fraction prepared from Panax ginseng. J Ginseng Res 2017;41:43-51. https://doi.org/10.1016/j.jgr.2015.12.009
  5. Lin Y, Li Y, Song Z-G, Zhu H, Jin Y-H. The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity. J Ginseng Res 2017;41:330-8. https://doi.org/10.1016/j.jgr.2016.06.005
  6. Igami K, Ozawa M, Inoue S, Iohara D, Miyazaki T, Shinoda M, Anraku M, Hirayama F, Uekama K. The formation of an inclusion complex between a metabolite of ginsenoside, compound K and gamma-cyclodextrin and its dissolution characteristics. J Pharm Pharmacol 2016;68:646-54. https://doi.org/10.1111/jphp.12468
  7. Kim EO, Cha KH, Lee EH, Kim SM, Choi SW, Pan CH, Um BH. Bioavailability of ginsenosides from white and red ginsengs in the simulated digestion model. J Agric Food Chem 2014;62:10055-63. https://doi.org/10.1021/jf500477n
  8. Chen C, Wang L, Cao F, Miao X, Chen T, Chang Q, Zheng Y. Formulation of 20(S)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery. Int J Pharm 2016;497:239-47. https://doi.org/10.1016/j.ijpharm.2015.12.014
  9. Ling J, Yu Y, Zhu J, Li Y, Ling L, Wang L, Xu C, Duan G. A highly sensitive HPLCMS/MS method for quantification of 20(S)-protopanaxadiol in human plasma and its application in phase IIa clinical trial of a novel antidepressant agent. J Chromatogr B 2016;1031:214-20. https://doi.org/10.1016/j.jchromb.2016.07.044
  10. Han S, Lim TG, Kim JE, Yang H, Oh DK, Yoon Park JH, Yoon Park D, Kim HJ, Rhee YK, Lee KW. The ginsenoside derivative 20(S)-protopanaxadiol inhibits solar ultraviolet light-induced matrix metalloproteinase-1 expression. J Cell Biochem 2017. http://dx.doi.org/10.1002/jcb.26023. in press.
  11. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv 2016;23:564-78. https://doi.org/10.3109/10717544.2014.935532
  12. Wan T, Xu T, Pan J, Qin M, Pan W, Zhang G, Wu Z, Wu C, Xu Y. Microemulsion based gel for topical dermal delivery of pseudolaric acid B: in vitro and in vivo evaluation. Int J Pharm 2015;493:111-20. https://doi.org/10.1016/j.ijpharm.2015.07.058
  13. Cavalcanti AL, Reis MY, Silva GC, Ramalho IM, Guimaraes GP, Silva JA, Saraiva KL, Damasceno BP. Microemulsion for topical application of pentoxifylline: in vitro release and in vivo evaluation. Int J Pharm 2016;506:351-60. https://doi.org/10.1016/j.ijpharm.2016.04.065
  14. Carvalho AL, Silva JA, Lira AA, Conceicao TM, Nunes Rde S, de Albuquerque Junior RL, Sarmento VH, Leal LB, de Santana DP. Evaluation of microemulsion and lamellar liquid crystalline systems for transdermal zidovudine delivery. J Pharm Sci 2016;105:2188-93. https://doi.org/10.1016/j.xphs.2016.04.013
  15. Zhu W, Guo C, Yu A, Gao Y, Cao F, Zhai G. Microemulsion-based hydrogel formulation of penciclovir for topical delivery. Int J Pharm 2009;378:152-8. https://doi.org/10.1016/j.ijpharm.2009.05.019
  16. Kansagra H, Mallick S. Microemulsion-based antifungal gel of luliconazole for dermatophyte infections: formulation, characterization and efficacy studies. J Pharm Invest 2016;46:21-8. https://doi.org/10.1007/s40005-015-0209-9
  17. Chen H, Chang X, Du D, Li J, Xu H, Yang X. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery. Int J Pharm 2006;315:52-8. https://doi.org/10.1016/j.ijpharm.2006.02.015
  18. Patel MR, Patel RB, Parikh JR, Patel BG. Formulation consideration and skin retention study of microemulsion containing tazarotene for targeted therapy of acne. J Pharm Invest 2016;46:55-66. https://doi.org/10.1007/s40005-015-0213-0
  19. Hathout RM, Mansour S, Geneidi AS, Mortada ND. Visualization, dermatopharmacokinetic analysis and monitoring the conformational effects of a microemulsion formulation in the skin stratum corneum. J Colloid Interface Sci 2011;354:124-30. https://doi.org/10.1016/j.jcis.2010.10.025
  20. Rao S, Barot T, Rajesh K, Jha LL. Formulation, optimization and evaluation of microemulsion based gel of butenafine hydrochloride for topical delivery by using simplex lattice mixture design. J Pharm Invest 2016;46:1-12. https://doi.org/10.1007/s40005-015-0207-y
  21. Jaiswal M, Kumar A, Sharma S. Nanoemulsions loaded Carbopol 934 based gel for intranasal delivery of neuroprotective Centella asiatica extract: in-vitro and ex-vivo permeation study. J Pharm Invest 2016;46:79-89. https://doi.org/10.1007/s40005-016-0228-1
  22. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract 2013;2013:316-42.
  23. Lee SG, Kang JB, Kim SR, Kim CJ, Yeom DW, Yoon HY, Kwak SS, Choi YW. Enhanced topical delivery of tacrolimus by a carbomer hydrogel formulation with transcutol P. Drug Dev Ind Pharm 2016;42:1636-42. https://doi.org/10.3109/03639045.2016.1160107
  24. Pham CV, Cho C-W. Application of d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) in transdermal and topical drug delivery systems (TDDS). J Pharm Invest 2017;47:111-21. https://doi.org/10.1007/s40005-016-0300-x
  25. Jung E, Kang YP, Yoon IS, Kim JS, Kwon SW, Chung SJ, Shim CK, Kim DD. Effect of permeation enhancers on transdermal delivery of fluoxetine: in vitro and in vivo evaluation. Int J Pharm 2013;456:362-9. https://doi.org/10.1016/j.ijpharm.2013.08.080
  26. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2000;45:89-121. https://doi.org/10.1016/S0169-409X(00)00103-4
  27. Kim JE, Yoon IS, Cho HJ, Kim DH, Choi YH, Kim DD. Emulsion-based colloidal nanosystems for oral delivery of doxorubicin: improved intestinal paracellular absorption and alleviated cardiotoxicity. Int J Pharm 2014;464:117-26. https://doi.org/10.1016/j.ijpharm.2014.01.016
  28. Kim KT, Lee J-Y, Park J-H, Cho H-J, Yoon I-S, Kim D-D. Capmul MCM/Solutol HS15-based microemulsion for enhanced oral bioavailability of rebamipide. J Nanosci Nanotechnol 2017;17:2340-4. https://doi.org/10.1166/jnn.2017.13314
  29. da Silva GB, Scarpa MV, Carlos IZ, Quilles MB, Lia RC, do Egito ES, de Oliveira AG. Oil-in-water biocompatible microemulsion as a carrier for the antitumor drug compound methyl dihydrojasmonate. Int J Nanomed 2015;10:585-94.
  30. Silva AE, Barratt G, Cheron M, Egito ES. Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int J Pharm 2013;454:641-8. https://doi.org/10.1016/j.ijpharm.2013.05.044
  31. Aloisio C, Longhi MR, De Oliveira AG. Development and characterization of a biocompatible soybean oil-based microemulsion for the delivery of poorly water-soluble drugs. J Pharm Sci 2015;104:3535-43. https://doi.org/10.1002/jps.24555
  32. Fricker G, Kromp T, Wendel A, Blume A, Zirkel J, Rebmann H, Setzer C, Quinkert RO, Martin F, Muller-Goymann C. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res 2010;27:1469-86. https://doi.org/10.1007/s11095-010-0130-x
  33. Chen H, Mou D, Du D, Chang X, Zhu D, Liu J, Xu H, Yang X. Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int J Pharm 2007;341:78-84. https://doi.org/10.1016/j.ijpharm.2007.03.052
  34. Karthikeyan K, Durgadevi R, Saravanan K, Shivsankar K, Usha S, Saravanan M. Formulation of bioadhesive carbomer gel incorporating drug-loaded gelatin microspheres for periodontal therapy. Trop J Pharm Res 2012;11:335-43.
  35. Suhaime IHB, Tripathy M, Mohamed MS, Majeed ABA. The pharmaceutical applications of carbomer. Asian J Pharm Sci Res 2012;2:1-12.
  36. Tamburic S, Craig DQ. The effects of ageing on the rheological, dielectric and mucoadhesive properties of poly(acrylic acid) gel systems. Pharm Res 1996;13:279-83. https://doi.org/10.1023/A:1016003400886
  37. Islam MT, Rodriguez-Hornedo N, Ciotti S, Ackermann C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm Res 2004;21:1192-9. https://doi.org/10.1023/B:PHAM.0000033006.11619.07
  38. Yuan C, Xu Z, Fan M, Liu H, Xie Y, Zhu T. Study on characteristics and harm of surfactants. J Chem Pharm Res 2014;6:2233-7.
  39. Ohman H, Vahlquist A. In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Derm Venereol 1994;74:375-9.
  40. Jung EC, Maibach HI. Animal models for percutaneous absorption. J Appl Toxicol 2015;35:1-10. https://doi.org/10.1002/jat.3004
  41. Mou D, Chen H, Du D, Mao C, Wan J, Xu H, Yang X. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm 2008;353:270-6. https://doi.org/10.1016/j.ijpharm.2007.11.051
  42. Chen L, Tan F,Wang J, Liu F. Microemulsion: a novel transdermal delivery system to facilitate skin penetration of indomethacin. Pharmazie 2012;67:319-23.
  43. Mura P, Faucci MT, Bramanti G, Corti P. Evaluation of transcutol as a clonazepam transdermal permeation enhancer from hydrophilic gel formulations. Eur J Pharm Sci 2000;9:365-72. https://doi.org/10.1016/S0928-0987(99)00075-5
  44. Valenta C, Wanka M, Heidlas J. Evaluation of novel soyaelecithin formulations for dermal use containing ketoprofen as a model drug. J Control Rel 2000;63:165-73. https://doi.org/10.1016/S0168-3659(99)00199-6
  45. Heuschkel S, Goebel A, Neubert RH. Microemulsions-modern colloidal carrier for dermal and transdermal drug delivery. J Pharm Sci 2008;97:603-31. https://doi.org/10.1002/jps.20995
  46. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev 2002;54:S77-98. https://doi.org/10.1016/S0169-409X(02)00116-3
  47. Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI. Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul 2008;2:238-57. https://doi.org/10.2174/187221108786241679
  48. Ita K. Progress in the use of microemulsions for transdermal and dermal drug delivery. Pharm Dev Technol 2017;22:467-75. https://doi.org/10.3109/10837450.2016.1148722
  49. Azzi L, El-Alfy M, Martel C, Labrie F. Gender differences in mouse skin morphology and specific effects of sex steroids and dehydroepiandrosterone. J Invest Dermatol 2005;124:22-7. https://doi.org/10.1111/j.0022-202X.2004.23545.x
  50. Patel MR, Patel RB, Parikh JR, Patel BG. Novel isotretinoin microemulsionbased gel for targeted topical therapy of acne: formulation consideration, skin retention and skin irritation studies. Appl Nanosci 2016;6:539-53. https://doi.org/10.1007/s13204-015-0457-z
  51. Kong X, Zhao Y, Quan P, Fang L. Development of a topical ointment of betamethasone dipropionate loaded nanostructured lipid carrier. Asian J Pharm Sci 2016;11:248-54. https://doi.org/10.1016/j.ajps.2015.07.005
  52. Naz Z, Ahmad FJ. Curcumin-loaded colloidal carrier system: formulation optimization, mechanistic insight, ex vivo and in vivo evaluation. Int J Nanomedicine 2015;10:4293-307.
  53. Fan X, Chen J, Shen Q. Docetaxelenicotinamide complex-loaded nanostructured lipid carriers for transdermal delivery. Int J Pharm 2013;458:296-304. https://doi.org/10.1016/j.ijpharm.2013.10.036
  54. Sah AK, Jain SK, Pandey RS. Microemulsion based hydrogel formulation of methoxsalen for the effective treatment of psoriasis. Asian J Pharm Clin Res 2011;4:140-5.
  55. Uchida T, Kadhum WR, Kanai S, Todo H, Oshizaka T, Sugibayashi K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M. Eur J Pharm Sci 2015;67:113-8. https://doi.org/10.1016/j.ejps.2014.11.002
  56. Idrees M, Rahman N, Ahmad S, Ali M, Ahmad I. Enhance transdermal delivery of flurbiprofen via microemulsions: effects of different types of surfactants and cosurfactants. Daru 2011;19:433-9.

Cited by

  1. Development and Evaluation of a Water-in-oil Microemulsion Formulation for the Transdermal Drug Delivery of Teriflunomide (A771726) vol.67, pp.8, 2018, https://doi.org/10.1248/cpb.c18-00930
  2. Nanostructured Lipid Carrier Gel for the Dermal Application of Lidocaine: Comparison of Skin Penetration Testing Methods vol.11, pp.7, 2018, https://doi.org/10.3390/pharmaceutics11070310
  3. Gelled non-toxic microemulsions: phase behavior & rheology vol.15, pp.41, 2019, https://doi.org/10.1039/c9sm01350d
  4. Transcutol® P/Cremophor® EL/Ethyl Oleate-Formulated Microemulsion Loaded into Hyaluronic Acid-Based Hydrogel for Improved Transdermal Delivery and Biosafety of Ibuprofen vol.21, pp.1, 2020, https://doi.org/10.1208/s12249-019-1584-8
  5. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis vol.27, pp.1, 2018, https://doi.org/10.1080/10717544.2020.1754527
  6. Development of 20(S)-Protopanaxadiol-Loaded SNEDDS Preconcentrate Using Comprehensive Phase Diagram for the Enhanced Dissolution and Oral Bioavailability vol.12, pp.4, 2018, https://doi.org/10.3390/pharmaceutics12040362
  7. Lipid Nanoparticles for Enhancing the Physicochemical Stability and Topical Skin Delivery of Orobol vol.12, pp.9, 2020, https://doi.org/10.3390/pharmaceutics12090845
  8. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers vol.30, pp.None, 2021, https://doi.org/10.1016/j.cjche.2020.11.012
  9. Recent Advances in Nanomaterials for Dermal and Transdermal Applications vol.5, pp.1, 2018, https://doi.org/10.3390/colloids5010018
  10. Chemical compositon, antibacterial and antioxidant activities of Cnidium silaifolium ssp. orientale (Boiss.) Tutin essential oils vol.72, pp.2, 2018, https://doi.org/10.3989/gya.1146192