References
- I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," 2014 [Internet], Available: https://arxiv.org/abs/1412.6572.
- N. Carlini and D. Wagner, "Towards evaluating the robustness of neural networks," in Proceedings of IEEE Symposium on Security and Privacy, San Jose, CA, pp. 39-57, 2017. DOI: 10.1109/SP.2017.49.
- N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami, "The limitations of deep learning in adversarial settings," in Proceedings of IEEE European Symposium on Security and Privacy, Saarbrucken, Germany, pp. 372-387, 2016. DOI: 10.1109/EuroSP.2016.36.
- J. Lu, H. Sibai, E. Fabry, and D. Forsyth, "No need to worry about adversarial examples in object detection in autonomous vehicles," 2017 [Internet], Available: https://arxiv.org/abs/1707.03501.
- A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, "Synthesizing robust adversarial examples," 2018 [Internet], Available: https://arxiv.org/abs/1707.07397.
- J. Su, D. V. Vargas, and S. Kouichi, "One pixel attack for fooling deep neural networks," 2018 [Internet], Available: https://arxiv.org/abs/1710.08864.
- S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, "DeepFool: a simple and accurate method to fool deep neural networks," 2016 [Internet], Available: https://arxiv.org/abs/1511.04599.
- R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner. "Detecting adversarial samples from artifacts," 2017 [Internet], Available: https://arxiv.org/abs/1703.00410.
- X. Li and F. Li, "Adversarial examples detection in deep networks with convolutional filter statistics," 2017 [Internet], Available: https://arxiv.org/abs/1612.07767.
- S. Sabour, N. Frosst, and G. E. Hinton, "Dynamic routing between capsules," 2017 [Internet], Available: https://arxiv.org/abs/1710.09829.
- T. Strauss, M. Hanselmann, A. Junginger, and H. Ulmer, "Ensemble methods as a defense to adversarial perturbations against deep neural networks," 2018 [Internet], Available: https://arxiv.org/abs/1709.03423.
- W. He, J. Wei, X. Chen, N. Carlini, and D. Song, "Adversarial example defenses: ensembles of weak defenses are not strong," 2017 [Internet], Available: https://arxiv.org/abs/1706.04701.