
ISSN 2288-4866 (Print)
ISSN 2288-4882 (Online)
http://www.jiisonline.org

J Intell Inform Syst 2018 September: 24(3): 243~262 http://dx.doi.org/10.13088/jiis.2018.24.3.243

243

An Algorithm for Finding a Relationship Between Entities:
Semi-Automated Schema Integration Approach

Yongchan Kim
College of Business Administration,
Seoul National University
(nowmyt@gmail.com)

Jinsoo Park
College of Business Administration,
Seoul National University
(jinsoo@snu.ac.kr)

Jihae Suh
Big Data Institute,
Seoul National University
(jihaesuh77@snu.ac.kr)

․․․

Database schema integration is a significant issue in information systems. Because schema integration is a
time-consuming and labor-intensive task, many studies have attempted to automate it. Researchers typically use
XML as the source schema and leave much of the work to be done through DBA intervention, e.g., there are
various naming conflicts related to relationship names in schema integration. In the past, the DBA had to intervene
to resolve the naming-conflict name. In this paper, we introduce an algorithm that automatically generates
relationship names to resolve relationship name conflicts that occur during schema integration. This algorithm is
based on an Internet collocation and English sentence example dictionary. The relationship between the two entities
is generated by analyzing examples extracted based on dictionary data through natural language processing. By
building a semi-automated schema integration system and testing this algorithm, we found that it showed about 90%
accuracy. Using this algorithm, we can resolve the problems related to naming conflicts that occur at schema
integration automatically without DBA intervention.

Key Words : Schema Integration, Naming Conflicts, Natural Language Processing, XML, Entity Relationship
Diagram (ERD)

․․․

Received : June 3, 2018 Revised : September 17, 2018 Accepted : September 28, 2018

Publication Type : Regular Paper(Fast-track) Corresponding Author : Jihae Suh

1. Introduction

Conceptual modeling has assumed a relevant
role in the development of information systems
and software applications because it is an essential
phase in database design (Castano et al., 1998).
Conceptual modeling of data is part of most
applied system development methods further,
enterprise modeling has emerged as a preliminary
design phase in software system development to

capture the most important aspects in an
organization. The increase in the number of
databases has entailed the management of related
data in different formats across these databases. In
order for organizations to use other organizations’
data for better decision-making and success, they
need to understand the semantics and retrieve from
these other distributed and heterogeneous data
sources (Unal and Afsarmanesh, 2010). Moreover,
“even a single enterprise may have heterogeneous

Yongchan Kim․Jinsoo Park․Jihae Suh

244

information bases for reasons of history or
departmental autonomy” (Kaul et al., 1990). As a
result, interoperability is becoming one of the most
critical issues for medium- to large-size enterprises
(Spaccapietra et al., 1992).

Schema integration is defined as the activity of
integrating the schemas of existing or proposed
databases into a global, unified schema (Batini et
al., 1986). Two types of schema integration are
defined: (1) view integration, which is performed
during the database design process, e.g., at the
conceptual design phase, and (2) database
integration, which produces the global schema of a
number of databases (Batini et al., 1986). Schema
integration has been a fundamental issue in data
sharing among distributed, heterogeneous, and
autonomous databases. With the increasing number
of databases, integration problems have become
more apparent. Schema integration aims at finding
a unified representation of schemas by merging
them. In order to integrate schemas, syntactic,
semantic, and structural relationships among
elements of these schemas need to be identified
(Unal et al., 2010). A large amount of work has
been done in the integration area. Batini et al.
(1986) offer a detailed survey of methodology for
view and database integration. New contributions
often appear in the literature (Motro, 1987; Hayne
and Ram, 1990; Kaul et al, 1990; Gotthard et al,
1992; Spaccapietra et al., 1992; Spaccapietra and
Parent, 1994; Beeri and Milo, 1999; Kwan and
Fong, 1999). Most of the work has been performed
in the context of the relational model, the
functional model (Motro, 1987), and semantic data

models, e.g., the object-oriented model, and the
ER model (Spaccapietra and Parent, 1994). The
majority of these approaches do not aim at
developing semi-automated systems. What they do
provide are general guidelines and concepts on
different steps of the integration process. However,
because schema integration is a difficult and
complex task, there is a need to help users with
this complicated task by providing some
semi-automatic mechanisms (Unal and
Afsarmanesh, 2010). A number of recent efforts
focused on semi-automatic schema integration or
merging, including Melnik et al. (2003), and
Pottinger and Bernstein (2008). However, most of
these studies used XML schemas as source
schemas and do not use ER models as source
schemas. The ER model (Chen, 1976) has attracted
considerable attention in system modeling and
database design (Lee and ling, 2003). The ER
concepts (entities and relationships) correspond to
structures naturally occurring in information
systems. This enhances the ability of designers to
accurately describe database applications.
Furthermore, the schema integration studies dealt
with the DBA’s involvement in the new
relationship names that occurred during the process
of resolving structural conflicts. Choosing one
between two relationship names in a synonym
relationship or naming a newly created relationship
is a cumbersome task for the DBA. Thus,
automating the relationship name issues that occur
during the schema integration process will improve
the efficiency of the overall schema integration
process.

An Algorithm for Finding a Relationship Between Entities: Semi-Automated Schema Integration Approach

245

In this respect, this study focuses on the two
problems found in previous studies. The first is to
build a semi-automated schema integrity system
using the ER model as the source schema. Second,
this study suggests an algorithm that can
automatically solve problems related to
relationship names in the schema integration
process. We first describe the process of
transforming the ER model into
machine-understandable XML in order to build a
semi-automated schema integration system using
the ER model as the source schema. This process
takes place during the pre-integration process and
must be done manually by the DBA. The next step
is to find the identical elements among the
schemas through schema matching. Here we use
Stanford core NLP to measure the similarity
between each element name. After that, we resolve
the structural differences between the two schemas
through algorithms that resolve structural conflicts.
In the process of resolving a structural conflict, if
there is a relationship with a newly created entity,
we apply the algorithm we have developed to deal
with this problem automatically. The intermediate
schema generated through this process is integrated
to finally generate the integrated schema. We also
measured the quality of the final integrated schema
by measuring completeness and minimality by
comparing the integration schema generated by the
system with the integration schema received from
the experts.

To sum, the main contributions of this study are
as follows:

• The ER model is used as the source schema

to construct a semi-automated schema
integration system;

• We automatically solve the problems related
to relationship names in the schema
integration process through our algorithm.

The rest of the paper is organized as follows.
Section 2 describes the methodologies used in the
schema integration system, such as conversion of
ER to XML, schema matching, and structural
conflict resolution. Section 3 briefly describes the
algorithm for finding a relationship between
entities we have developed. In Section 4, we apply
the methodologies described in Section 2 and our
algorithm described in Section 3 to implement
semi-automated schema integration. We conclude
in Section 5.

2. Methodologies for semi-automated
schema integration

Peter originally proposed the entity-relationship
(ER) model in 1976 as a way to unify network and
relational database views. Simply stated, the ER
model is a conceptual data model that views the
real world as entities and relationships. A basic
component of the model is the entity-relationship
diagram, which is used to visually represent data
objects. An ER model gives a graphical and
diagrammatical representation of various entities,
i.e., its attributes and relationships between
entities. This is turn helps to clarify understanding
the data structure and in minimizing redundancy
and other problems. Nevertheless, the ER model is

Yongchan Kim․Jinsoo Park․Jihae Suh

246

<Figure 1> Mapping Rules for ER to XML

easy for humans to handle but not so much for the
machine. Therefore, in order to carry out
automated schema integration on a machine, it is
necessary to process the ER model into another
form.

The eXtensible Markup Language (XML) has
emerged as a standard for information
representation and exchange on the Web as well as
the Intranet due to its self-describing data
capability and flexibility in organizing data (Gou
and Chirkova, 2007). The XML tag names are
readable and convey the meaning of the data. The
information structure is easily discerned by
humans and computers, as each XML tag
immediately precedes the associated data. The data
structure follows a noticeable and useful pattern,
making it easy to manipulate and exchange the
data (Algergawy et al., 2010). Thus, we convert
the ER model to XML so that the machine can
understand it. Because the majority of data in the
world is stored in databases, the conversion of
such data into XML documents is indispensable
for real world usage. In this conversion, rules and
algorithms for preserving the information of the

database schema and generating XML documents
based on such information are necessary.

We adopted Jin and Kang’s (2007) rules to
convert the ER model to XML. They describe
ER-to-XML mapping rules at the schema level.
Each entity type and relationship type in the ER
diagram is mapped into the top-level element in
the XML document. There are six top-level XML
elements that represent different entity types and
relationship cardinalities: <entity>, <weak entity>,
<unary-relationship>, <binary-relationship>,
<ternary-relationship>, and <n-ary relationship>.
The content (i.e., data value) of a top-level element
is the same as the corresponding name of an entity
type or a relationship type. For example, an entity
type STUDENT is represented in XML as
<entity>STUDENT</entity>. The attributes of an
entity type in the ER diagram are mapped into the
subelement <attribute> of the corresponding
top-level element in XML. The ER model used in
this study contains only entities and binary
relations. Figure 1 presents entities and binary
relations of the ER model and how the attributes
are converted to XML.

An Algorithm for Finding a Relationship Between Entities: Semi-Automated Schema Integration Approach

247

<Figure 2> Order Management Schema 1

<Figure 3> Order Management Schema 2

The strong entity type S in the ER diagram is
mapped to the <entity> element in the XML
document. The key attribute A of the entity E is
mapped in a similar way to the simple attribute. In
this case, the <key-attribute> element is added as
a subelement of the top-level element E. A simple
attribute A of the entity E in the ER diagram is
represented in XML using the <attribute>
element. The <attribute> element is placed as a
subelement of the belonging top-level XML

element. The binary relationship R between two
entity types S and T is mapped to the top-level
element <binary-relationship>. In addition, the
two participating <entity> elements are also placed
as subelements. In this case, for the associated
<entity> element, there are two required XML
attributes to express the minimum and maximum
cardinality constraints (i.e., min-card and max-card,
respectively).

Figures 2 and 3 are the ER models we used for
schema integration. The results of converting these
ER models into XML according to the conversion
rules described above are as follows: Figures 4 and
5 are an ER model converted into an XML
document, and Figure 6 shows an XML schema of
the corresponding XML document.

<Figure 4> XML document of schema 1

Yongchan Kim․Jinsoo Park․Jihae Suh

248

<Figure 5> XML document of Schema 2

<Figure 6> XML Schema of XML Document

The next step is a schema matching process,
which finds the corresponding pair with the
transformed XML. In this process, we adopted
Algergawy et al. (2010)’s measurement method.
The authors categorize element similarity measures
guided by the following observation: a number of
similarity measures make use of element internal
features without considering its surrounds. On the
other hand, several element similarity measures
exploit element relationships making use of
element surrounds. The former is called internal
element similarity, and the latter is called external
element similarity. Once the internal and external
element similarity values are obtained, a total
similarity value between a pair of elements can be
determined. Table 1 shows the measurement
methods applied to each schema element in this
study. Table 2 and 3 are formulas for each
measurement method.

<Table 1> Similarity Measure Used for Each
Schema Element

<Table 2> Formulas for Entities and Relationships

An Algorithm for Finding a Relationship Between Entities: Semi-Automated Schema Integration Approach

249

<Table 4> Result of Entity Similarity Comparison

<Table 3> Formulas for Attributes

Because, in the XML document that transformed
the ER model, the internal information about the
entity and relationship is only the name, we used
the name similarity only as a measure of the
internal similarity of the entities and relationships.
For measuring external similarity between entities
(relationships), we used leaf context similarity to
measure the similarity of the attributes of each
entity (relationship). Since the effective content of
a node is often captured by the leaf nodes of the
subtree rooted at that node, we compute leaf

context similarity (Zerdazi and Myriam, 2007). For
attributing the internal similarity measure, name,
constraint, and data type were measured. As an
external similarity measurement method, we use
the ancestor context similarity. Tables 4 and 5
show the results from the similarity measure.

<Table 5> Result of Relationship Similarity Comparison

Yongchan Kim․Jinsoo Park․Jihae Suh

250

<Figure 7> Transformation of an entity type attribute A into an entity type EA.

As a result of measuring the similarity between
the entities of Schemas 1 and 2, the following
results were obtained:

S1.Supplier ≡ S2.Supplier
S1.Payment ≅ S2.Invoice

S1.Order ≅ S2.Order
S1.Client ≅ S2.Customer

The threshold is 0.7, and if two or more entities
are above the threshold, the entity having the
highest value is adopted. S1.Supplier and
S2.Supplier were found to be completely identical,
and S1.Payment and S2.Invoice were found to be
quite similar. Entities similar to S1.Order have
S2.Order and S2.Offer, but the highest value of
S2.Order is most similar to S1.Order. As a result
of the similarity measurement of relationships, the
following results were obtained:

S1.receives ≅ S2.receives
S1.has ≅ S2.has

S1.makes ≅ S2.makes
S1.fulfills ≅ S2.fulfills
S1.refers ≅ S2.refers

For schema integration, it is necessary to find
corresponding pairs between schemas through

schema matching and to resolve naming conflicts
or structural conflicts among the corresponding
elements. In order to resolve the naming conflict,
the name of the entity in Schema 1 was adopted.
We adopted Lee and Ling (2003)’s study to solve
structural conflicts. The authors present a schema
integration methodology with particular focus on
the resolution of structural conflicts. They find
that, if the individual schemas have been designed
properly and the semantic equivalences among the
schemas identified correctly, then the key
structural conflict is that between an entity type
and an attribute. In their work, they insist that
resolving all structural conflicts between entities
and attributes will solve all sorts of structural
conflicts. Structural conflicts between entities and
attributes occur when an object exists as an entity
in one schema and an attribute exists in the other.

To check if there is a structural conflict, we
need to ensure that the entity that exists as an
entity in one schema exists as an attribute in the
other. One way to confirm this is that, if the key
attribute of one schema entity exists as a simple
attribute of the entity in the other schema, then the
simple attribute is an entity type. Another case is
that an entity name in one schema is included in
an attribute in the other schema. In our example
schema, we can see that Supply_Code is the key

An Algorithm for Finding a Relationship Between Entities: Semi-Automated Schema Integration Approach

251

<Figure 8> Example of relationship name conflict (1).

<Figure 9> Example of Relationship Name Conflict (2).

attribute of the S1.Supply entity in Schema 1 and
is the simple attribute of S2.Order in Schema 2. In
this case, because of the structural conflict, we
transformed the S2.Order.Supply_Code attribute
into an entity by applying the above
transformation.

3. An algorithm for finding a
relationship between entities

In this paper, conflicts deal only with naming
conflicts and structural conflicts. The process of
conflict resolution in schema integration is divided
into naming conflict and structural conflict. During
the resolving naming conflicts, the relationship
naming conflict, as shown in Figure 8, may occur.

This is a common case where different
relationship names are assigned to identical
entities. In this case, DBA must select manually

one of the two relationship names. Another case is
when a new entity is created in the process of
resolving a structural conflict. The relationship
between the newly created entity and the existing
entity has not yet been given a name. In the
existing research, it was necessary to manually
specify the relationship name through the
intervention of the DBA.

During the resolving structural conflicts process,
the following may occur:

Figure 9 shows a case where a space occurs in
the relationship name when an attribute
Supply_Code is transformed into an entity. In this
case, the DBA must also choose one of the two
relationship names. DBA intervention in this
schema integration process makes it difficult to
automate schema integration and is
time-consuming and labor intensive.

This algorithm automatically generates
relationship names in these cases. Briefly, our
algorithm first searches the Internet collocation

Yongchan Kim․Jinsoo Park․Jihae Suh

252

dictionary for a specific entity name’s collocation.
In the generated collocation set, a combination of
each element and entity name is searched in the
dictionary to find the collocation where most
examples are present.

According to Chen’s (1983) research, nouns in
English sentences appear as entities in the ER
model, and verbs appear in the form of
relationships. Thus, we have found that more
similar sentences, including the entities (noun) and
the relation (verb), can infer the relationship
between entities.

In computational linguistics, a wide variety of
lexical association measures have been employed
for the task of (semi-)automatic collocation
identification and extraction:

￭ frequency-based measures (e.g., based on
absolute and relative co-occurrence
frequencies);

￭ information-theoretic measures (e.g., mutual
information, entropy);

￭ statistical measures (e.g., chi-square, t-test,
log-likelihood, Dice’s coefficient).

We adopt the frequency-based measurement
method and adopt the most frequent verb as the
relationship between two entities.

We compared various dictionaries to select
those from which to extract an example sentence
set. The comparison criterion was how many
examples were searched and whether they
supported a complex search.

<Figure 10> Comparison of Various Dictionaries

As a result, it was confirmed that the Naver
English Dictionary was overwhelmingly used in a
number of example sentences and also supports the
complex search function. Therefore, we selected
the Naver English Dictionary as an example
extract dictionary.

<Figure 11> Algorithm 1

An Algorithm for Finding a Relationship Between Entities: Semi-Automated Schema Integration Approach

253

<Figure 12> Algorithm 2

In the case of Figure 8, because two relation
names have already been given, the step for
searching the collocations of entities is skipped. In
Figure 9, the relationship name does not exist at
all and thus includes a process of searching for
collocations of entities. Thus, the rules for
applying our algorithm are as follows:

Rule1. If the name of 1 and the name of 2
conflict with each other, Algorithm 1
selects one of them.

Rule2. If a new relationship is created in the
process of resolving the structural conflict,
the relationship name is created through
Algorithm 2.

Because Algorithm 1 only omits the step of
searching for a collocation in Algorithm 2, the
description is based on Algorithm 2 here.

Step 1. Search collocations of entity names

<Figure 13> Search results for “car” in
the Collocation Dictionary

When a specific word is searched in the
Collocation Dictionary, a list of verbs used with
the word appears. We collect these and store them
in the collocation set. This process is performed
twice for the first entity name and the second
entity name. The list of collocations generated
from the entity name “Person” and “Car” is as
follows.

go by, travel by, drive, have, own, run, get in, get
into, pile into, get out of, get out, stop, back,
reverse, overtake, pass, lose control of, leave,

park, abandon, dump, build, make, manufacture,
produce, repair, service, work on, take in, wash,
hire, break into, steal, start, run on, do, pull out,
turn out, drive off, pull away, accelerate, slow

down…

Step 2. Search “Entity Name1 + A verb extracted
from the collocation set + Entity Name2” in the
dictionary and collect the example sentences:

Yongchan Kim․Jinsoo Park․Jihae Suh

254

<Figure 14> Search results for “person
drive car” in Naver Dictionary

Extract the collocation one by one from the
collocation set and search the combination of the
collocation and entity names from the dictionary.
The searched example sentences are stored as a list
of example sentences of the corresponding
collocations.

Step 3. Processing Part-of-Speech (POS) and
Dependency Analysis for each example sentence

Take an example sentence from the example
sentence list and process Part-of-Speech and
Dependency Analysis for each example sentence.

<Figure 15> Result of dependency analysis

POS tagging is the process of marking up a
word in a text (corpus) as corresponding to a
particular part of speech, based on its definition
and its context. For example, POS tagging analysis
for a sample sentence “The man drives a blue car”
is as follows.

“The man drives a blue car”
-> drives-VBZ (root)
 -> man-NN (nsubj)
 -> the-DT (det)
-> car-NN (dobj)
 -> a-DT (det)
 -> blue-JJ (amod)

Next to the POS tag is a dependency for each
term, which has the structure as shown in Figure
15. The dependency “root” is a grammatical
relation that points to the root of the sentence. We
proceeded with the above analysis for each
example, and when the relationship name is
located in the root part and both entity names exist
in the example sentence, the example sentence is
meaningful.

Step 4. Counting the occurrence of appropriate
examples for each collocation verb.

<Figure 16> Occurrence of appropriate
examples for “Person + Collocation + Car”

An Algorithm for Finding a Relationship Between Entities: Semi-Automated Schema Integration Approach

255

Figure 16 shows how many appropriate
examples exist for each word based on the
collation list of entity names “Person” and “Car.”
According to the above results, the most
appropriate relationship between “Person” and
“Car” is “drive.”

Step 5. The most frequently used verb is adopted
as the final relationship name.

<Figure 17> Result of “Person” and “Car”

We tested the algorithm with 19 entity name
pairs, and the result is shown in Figure 18.

<Figure 18> Result of 19 Entity Name Pairs

4. Semi-Automated Schema Integration

In this section, we will proceed with the actual
semi-automated schema integration by applying the
methodologies outlined above and the algorithms
we have developed. We used the library project
domain for the experiment. The reason for using
the library project domain is that the domain is
very familiar to the expert (Suh and Park, 2017)
therefore, it is useful to evaluate the our schema
integration methodology with expert integration.
The schemas used are shown in Figures 2 and 3,
and the schemas were preprocessed to convert
them into XML document format. First, in Figure
19, name conflicts are resolved. In this paper, only
the relationship names are considered. Therefore,
the entity name is assumed to follow Schema 1.

<Figure 19> Change the name of
elements (Schema 2)

Yongchan Kim․Jinsoo Park․Jihae Suh

256

<Figure 20> Make “Supply_Code” into
an entity (Schema 2)

<Figure 21> Apply the algorithm to conflicting or
newly created relationship name (Schema 2)

<Figure 22> Integrated schema:
Generated by tool (Sitool)

5. Evaluation

Now we have an integrated schema produced by
a matching tool, named Sitool, and an expert
integrated schema Siexp. Recall that this expert
integrated schema is ideal. Siexp stands for the
number of elements in schema Siexp. Thus,
completeness, as given by Formula (1), represents
the proportion of elements in the tool integrated
schema, which are common with the expert
integrated schema. Minimality is computed thanks
to Formula (2), and it is the percentage of extra
elements in the tool integrated schema w.r.t. expert
integrated schema. Both metrics are in the range
(0; 1), with a 1 value, meaning that the tool
integrated schema is totally complete (respectively,
minimal) related to expert integrated schema.

(1)

(2)

The schema used for the evaluation was given
from two experts. Davies et al. (2006) presented
the top six most commonly used modeling
techniques stratified according to the years of
modeling experience of the practitioners and the
results presented that a significant increase in
usage from the 0-3 years level to the 4-10 years
level of experience. Accordingly, we selected two
experts who fit the above category. One has10
year database and 7 year modeling field experience
and the other has 5 year experience in modeling

An Algorithm for Finding a Relationship Between Entities: Semi-Automated Schema Integration Approach

257

field. In addition, Model comparison is well used
evaluation method in conceptual modeling research
(Chau and Hu, 2001). In detail, it is comparison of
schema developed by expert and system. The
reason for using model comparison is that
conceptual model related to the representation of
the entire information content of the database
being designed in somewhat abstract terms relative
to the way the data is physically stored (Date,
1990).

<Figure 23> Integrated schema: Expert 1

<Figure 24> Integrated schema: Expert 2

<Table 6> Results of Schema Similarity Comparison

6. Limitations

This algorithm selects and creates relationship
names but has the following limitations. First, this
algorithm deals only with binary relationships. No
unary relationships or ternary relationships were
considered. Binary relationships cannot be selected
because two entity names are not given as input
values required. Ternary relations cannot be
applied to this algorithm because proper example
sentences cannot be retrieved due to limitations of
dictionary search functions. Second, the algorithm
generates a relationship name based on a simple
frequency only. For example, in the case of a
relationship between a person and a car, a
relationship name “driving” through this algorithm
is generated, but this may not be appropriate for
some domains. In the case of an insurance
company database, the relationship name between
people and cars will be “insure.” On the other
hand, in the case of a car sales company database,
the relationship between people and cars would be
“purchase” or “buy.” To solve this problem, you
first need to know the domain of the target
schema. However, even if you know the domain of
the target schema, it is not easy to know which
verb is appropriate for that domain. The entity
name, that is, the noun, some method, such as

Yongchan Kim․Jinsoo Park․Jihae Suh

258

TF-IDF, can be used to extract nouns that are
often used in a particular domain, but in verbs
there is a variety of meanings in one verb. It is not
easy to specify the domain of the verb. Finally, if
both entities are human, this algorithm cannot
extract a relationship name. This is because the
relationship between people and people can be
diverse. In the case of human nouns, collocation
dictionaries often do not search for collocations.

7. Conclusion

Schemas integration as a systematic procedure
of recognizing the similarities and reconciling the
differences in the data descriptions of databases
could verify useful in supporting the initial phases
of developing a database. Therefore, much
research has been done on schema integration, and,
in recent decades, efforts have been made to build
an automated schema integration system. However,
most of the automated schema integration studies
in the past have used XML as the source schema
and still require some intervention by the DBA.
The ER schema integration, which is difficult to
be automatically performed, can be automatically
done by converting the ER model to XML on the
system. Problems related to relationship names that
occur during the schema integration process entail
more work than necessary for the DBA. Using the
relationship name generation algorithm, proposed
by our research, can dramatically shorten this
process and time. If DBA apply our methodology
to schema integration, DBA can save his or her

time and power to the analysis and modelling
scripts and rules. Furthermore, the database
integration of even complex information systems
could be an easier task if it was based on our
approach.

Reference

Algergawy, A., Richi, N., and Gunter S, "Element
similarity measures in XML schema
matching." Information Sciences, Vol. 180,
No. 24 (2010), 4975-4998.

Batini, C., and Lenzerini, M, "A methodology for
data schema integration in the entity
relationship model," IEEE Transactions on
Software Engineering, Vol.10, No.6 (1984),
650-664.

Batini, C., Lenzerini, M., and Navathe, S. B, "A
comparative analysis of methodologies for
database schema integration," ACM
computing surveys, Vol.18, No.4 (1986),
323-364.

Beeri, C., and Milo, T, "Schemas for integration
and translation of structured and
semi-structured data," International
conference on database theory, Springer
Berlin Heidelberg, 1999.

Castano, S., De Antonellis, V., Fugini, M. G., and
Pernici, B, "Conceptual schema analysis:
techniques and applications," ACM
Transactions on Database Systems, Vol. 23,
No.3 (1998), 286-333.

Chau, P. Y., and Hu, P. J. H., “Information
technology acceptance by individual
professionals: A model comparison

An Algorithm for Finding a Relationship Between Entities: Semi-Automated Schema Integration Approach

259

approach,” Decision sciences, Vol. 32, No. 4
(2001), 699-719.

Chen, P. P. S, "English sentence structure and
entity-relationship diagrams," Information
Sciences, Vol.29, No.2 (1983), 127-149.

Chen, P. P. S, "The entity-relationship model―
toward a unified view of data." ACM
Transactions on Database Systems, Vo.1,
No.1 (1976), 9-36.

Date, C. J. (1990). An Introduction to Database
Systems, Vol. 1, Fifth Edn, Reading:
Addison-Wesley.

Davies, I., Green, P., Rosemann, M., Indulska, M.,
and Gallo, S. “ How do practitioners use
conceptual modeling in practice?” Data &
Knowledge Engineering, Vol. 58, No. 3
(2006), 358-380.

Gotthard, W., Lockemann, P. C., and Neufeld, A,
"System-guided view integration for
object-oriented databases," IEEE Transactions
on knowledge and Data Engineering, Vol.4,
No.1 (1992), 1-22.

Gou, G., and Rada C, "Efficiently querying large
XML data repositories: A survey." IEEE
Transactions on Knowledge and Data
Engineering, Vol.19, No. 10 (2007),
1381-1430

Hayne, S., and Ram, S, "Multi-user view
integration system (MUVIS): An expert
system for view integration," Data
Engineering, 1990.

Jin, S., and Kang, W, "Mapping Rules for ER to
XML Using XML schema," Proceedings 10th
Southern Association for Information Systems
Conference. Jacksonville, Florida, USA.
2007.

Kaul, M., Drosten, K., and Neuhold, E. J,
"Viewsystem: Integrating heterogeneous
information bases by object-oriented views,"
Data Engineering, 1990.

Kwan, I., and Fong, J, "Schema integration
methodology and its verification by use of
information capacity," Information Systems,
Vol. 24, No.5 (1999), 355-376.

Lee, M. L., and Ling, T. W, "A methodology for
structural conflict resolution in the integration
of entity-relationship schemas," Knowledge
and Information Systems, Vol.5, No.2 (2003),
225-247.

Melnik, S., Rahm, E., and Bernstein, P. A,
"Rondo: A programming platform for generic
model management," Proceedings of the 2003
ACM SIGMOD international conference on
Management of data. ACM, 2003.

Motro, A, "Superviews: Virtual integration of
multiple databases," IEEE Transactions on
Software Engineering, Vol.7 (1987), 785-798.

Pottinger, R., and Bernstein, P. A, "Schema
merging and mapping creation for relational
sources," Proceedings of the 11th
international conference on extending
database technology: Advances in database
technology. ACM, 2008.

Spaccapietra, S., and Parent, C, "View integration:
A step forward in solving structural
conflicts," IEEE transactions on Knowledge
and data Engineering, Vol. 6, No.2 (1994),
258-274.

Spaccapietra, S., Parent, C., and Dupont, Y,
"Model independent assertions for integration
of heterogeneous schemas," The International
Journal on Very Large Data Bases, Vol.1,
No.1 (1992), 81-126.

Yongchan Kim․Jinsoo Park․Jihae Suh

260

Storey, V. C, "Understanding semantic
relationships," The International Journal on
Very Large Data Bases Vol.2, No.4 (1993),
455-488.

Suh, J., and Jinsoo P, "Effects of Domain
Familiarity on Conceptual Modeling
Performance." Journal of Database
Management, Vol 28, No. 2 (2017), 27-55.

Unal, O., and Afsarmanesh, H, "Semi-automated
schema integration with SASMINT,"
Knowledge and information systems, Vol.23,
No.1 (2010), 99-128.

Zerdazi, A., and Myriam L, "Matching of
Enhanced XML Schemas with a Measure of
Structural-context Similarity." WEBIST (2007)

An Algorithm for Finding a Relationship Between Entities: Semi-Automated Schema Integration Approach

Bibliographic info: J Intell Inform Syst 2018 September: 24(3): 243~262 261

국문요약

엔티티 간의 관계명을 생성하는 알고리즘:
반자동화된 스키마 통합

1)김용찬*․박진수*․서지혜**

데이터 베이스 스키마 통합은 정보 시스템에서 매우 중요한 이슈이다. 스키마 통합은 시간과 노력이

상당히 많이 필요하기 때문에 그동안 많은 연구들은 자동화된 스키마 통합 시스템을 구축하기 위해

노력했다. 하지만 지금까지의 연구에서는 XML을 소스 스키마로 사용하고 여전히 많은 부분을 데이터

베이스 관리자의 개입이 필요하도록 남겨두었다. 예를 들면, 스키마 통합 시 발생하는 관계명 명칭 충

돌과 같은 문제는 데이터 베이스 관리자가 직접 개입하여야 해결할 수 있었다. 이 논문에서는 스키마

통합 시 발생하는 관계명 명칭 충돌을 해결하기 위해 관계명을 자동으로 생성해주는 알고리즘을 소개

한다. 이 알고리즘은 인터넷 연어(Collocation) 사전과 영어 예문을 기반으로 한다. 사전 데이터를 기반

으로 하여 추출한 예문들을 자연어처리 과정을 통해 분석한 후 두 엔티티 사이의 관계명을 생성한다.
반자동화된 스키마 통합 시스템을 구축하여 이 알고리즘을 테스트해보았으며 그 결과 약 90%의 정확

도를 나타냈다. 이 알고리즘을 적용하면 스키마 통합 시에 데이터 베이스 관리자의 개입을 최소화할

수 있으며 이는 자동화된 스키마 통합 시스템을 구축하는 데에 큰 도움이 될 것이다.

주제어 : 스키마 통합, 자연어 처리, 명칭 충돌, 개체관계모델, XML

논문접수일 : 2018년 6월 3일 논문수정일 : 2018년 9월 17일 게재확정일 : 2018년 9월 28일
원고유형 : 일반논문(급행) 교신저자 : 서지혜

 * 서울대학교 경영대학 경영정보시스템
** 교신저자: 서지혜

서울대학교 빅데이터 연구원
416 Gaepo-ro, Gangnam-gu, Seoul, 06324, Korea
Tel: +82-10-8770-3593, Fax: +82-2-573-0985, E-mail: jihaesuh77@snu.ac.kr

Yongchan Kim․Jinsoo Park․Jihae Suh

262

저 자 소 개

김 용 찬

서울대학교에서 석사학위를 취득하였고 고용노동부가 지원하는 서울대학교 4차산업 혁
명 아카데미, 서울시가 지원하는 서울대학교 빅데이터 아카데미에 연구원으로 참여하였
다. 관심분야는 데이터 마이팅, 데이터 통합 등이다.

박 진 수

현재 서울대학교 경영대학 교수로 재직 중이다. 미국 미네소타대학 조교수, 고려대학교
조교수를 역임하였다. 관심분야는 온톨로지, 빅데이터 분석, 데이터 통합 등이다. MIS
Quarterly, IEEE Transactions on Knowledge and Data Engineering, ACM Transactions on
Information Systems, IEEE Computer, Journal of Database Management, Data & Knowledge
Engineering, The Data Base for Advances in Information Systems 등 국내외 저널에 다수의
논문을 게재하였다.

서 지 혜

현재 서울대학교 빅데이터연구원 연구교수로 재직 중이다. 서울대학교에서 경영정보시
스템 전공으로 박사학위를 취득하였다고 관심분야는 빅데이터 분석, 데이터 마이닝, 데
이터베이스 등이다.

