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RINGS WITH THE SYMMETRIC PROPERTY

FOR IDEMPOTENT-PRODUCTS

Juncheol Han and Hyo-Seob Sim∗

Abstract. Let R be a ring with the unity 1, and let e be an idempo-

tent of R. In this paper, we discuss some symmetric property for the

set {(a1, a2, ..., an) ∈ Rn : a1a2 · · · an = e}. We here investigate some
properties of those rings with such a symmetric property for an arbitrary

idempotent e; some of our results turn out to generalize some known re-

sults observed already when n = 2 and e = 0, 1 by several authors. We also
focus especially on the case when n = 3 and e = 1. As consequences of our

observation, we also give some equivalent conditions to the commutativity

for some classes of rings, in terms of the symmetric property.

1. Introduction

Let R be a ring with the unity 1, and let e be an idempotent of R. Then, R
is called e-reversible if ab = e implies to ba = e for every a, b in R. R is called
e-symmetric if abc = e implies to acb = e for every a, b, c in R.

For the case when e = 0, the term ‘0-reversible’ is usually called simply
by ‘reversible’ (see, for example, Cohn [2]). The term ‘0-symmetric’ is usually
called simply by ‘symmetric’. Some other notation for the term 0-reversible
or 0-symmetric is also used. For examples, Anderson and Camillo [1] uses the
notation ZC2 for 0-reversible, and ZC3 for 0-symmetric, while Krempa and
Niewieczerzal [3] uses C0 for 0-reversible.

For the case when e = 1, the term ‘1-reversible’ is usually called by the
well-known term ‘directly finite’. It was shown that every reversible ring is
directly finite, which amounts to say that every 0-reversible ring is 1-reversible,
in fact. The proof can be found in [1]. In Proposition 2.1 in Section 2, we shall
generalize the above observation from the unity 1 to arbitrary idempotent e.

As an analogue to the reversible rings, it is natural to ask whether if R is
0-symmetric then R is 1-symmetric; it is shown that it is not true in general in
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Example 2.6. In Corollary 2.8, we shall give an alternative observation about
the question.

It was also shown that a ring R is symmetric if and only if the set

{(a1, a2, ..., an) ∈ Rn : a1a2 · · · an = 0}

is invariant under the permutation action. For the proof, see Anderson and
Camillo [1].

This characterization of 0-symmetric property can be generalized to an anal-
ogous characterization of e-symmetric property for every idempotent e. In The-
orem 2.5, we shall establish the characterization for the e-symmetric property.

In Section 2, we also investigate several important properties on the e-
symmetric property as well as the e-reversible property for a given idempo-
tent e of a ring. In particular, we shall give a characterization for 1-symmetric
property, in terms of the commutativity of the multiplicative group of units in
Theorem 2.7, which turns out to be useful for our purpose in Section 3.

In section 3, we shall discuss some applications of results investigated in
Section 2. We shall describe some equivalent conditions to the commutativity
for some classes of semiperfect rings in terms of the 1-symmetric property, as
well as the symmetric property for some mutually orthogonal local idempotent
elements.

Throughout this paper all rings are associative with the unity unless other-
wise specified. For a ring R, let J(R) denote the Jacobson radical of R, and
U(R) the multiplicative group of all units of R. A ring R is called reduced
if the only nilpotent element of R is zero. A ring R is called abelian if every
idempotent element of R is central. It is easy to see that every reduced ring is
abelian.

The notation and terminology not defined in this paper may be found in
some books on related areas, for example, Lam [4].

2. Idempotent-symmetric property

We first discuss some basic properties on the e-reversible property and e-
symmetric property for an arbitrary idempotent e of a ring R.

It was proved in [2] that if a ring R is reversible then R is directly finite. In
our terminology, if R is 0-reversible then R is 1-reversible. We here generalize
the result with the following proposition.

Proposition 2.1. Let R be a ring with the unity 1. If R is reversible, then R
is e-reversible for every idempotent e in R.

Proof. Let e be an idempotent in R. For every r in R, (1 − e)er = 0 and
re(1−e) = 0. Since R is reversible, it follows that er(1−e) = 0 and (1−e)re = 0,
and so er = re. therefore, e is central. Suppose that ab = e for a, b ∈ R. Then
(ba− e)b = b(ab)− be = 0. It follows that b(ba− e) = 0 because R is reversible.
So eba = e. On the other hand, since 1− e is central, a(1− e)b = (1− e)ab = 0.
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Since R is reversible, (1 − e)ba = 0. It follows that ba = eba = e. So R is
e-reversible. �

Proposition 2.2. Let R be a ring with the unity 1 and let e be an idempotent
in R. If R is e-reversible, then e is central.

Proof. Let r be an element of R, and denote a = e+er(1−e) and b = e+(1−e)re.
Then ae = e and eb = e. Since R is e-reversible, ea = ae and eb = be, which
yield that er = ere and re = ere, and so er = re. Therefore, e is central. �

We then have an immediate consequence of the above observations as follows.

Corollary 2.3. Every reversible ring is abelian.

It is also easy to see that every reduced ring is reversible, and so abelian.
Note that the converse of Proposition 2.2 may not be true; we observe it with

the following example.

Example 2.4. Let K be a field and consider

R =


a b c

0 a d
0 0 a

 : a, b, c, d ∈ K

 .

Then R has only two idempotents 0 and 1, which are central. Let Eij denote
the 3×3 matrix over K with (i, j)-entry 1, elsewhere 0, and A = E23+E13, B =
E12 + E13 ∈ R. Then R is not 0-reversible because AB = 0 and BA = E13,
while R is directly finite, i.e., R is 1-reversible.

We now observe a characteristic property for e-symmetric ring with the fol-
lowing theorem.

Theorem 2.5. Let R be a ring with the unity, and let e be an idempotent of R.
Then R is e-symmetric if and only if for every positive integer n, a1 · · · an = e
in R implies that aσ(1) · · · aσ(n) = e for every permutation of degree n.

Proof. Suppose that R is e-symmetric, it is obvious that R is e-reversible. Let
n be an integer such that n ≥ 2. Suppose that a1a2 · · · an = e in R. Then since
R is e-reversible, it follows that (a2 · · · an) a1 = e, and so aσ(1)aσ(2) · · · aσ(n) = e
for σ = (1, 2, . . . , n) in the symmetric group Sn. Moreover, it follows that
a2a1 (a3 · · · an) = e since a2(a3 · · · an)a1 = e and R is e-symmetric, and so
aσ(1)aσ(2) · · · aσ(n) = e for σ = (1, 2) ∈ Sn. Therefore, aσ(1)aσ(2)aσ(3) · · · aσ(n) =
e for all σ ∈ Sn, since Sn is generated by (1, 2) and (1, 2, . . . , n). It is also
obvious that the converse is true. In fact, the condition for n = 3 implies that
R is e-symmetric. �

Note that the same result for e = 0 was shown in [1].
It is obvious that every e-symmetric ring R is e-reversible for every idempo-

tent e of R. However, the converse may not be true, as shown in the following
example.
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Example 2.6. Let R = D × D for a division ring D which is not com-
mutative. It is easily checked that R is a reduced ring, and so e-reversible
for every idempotent e ∈ R by Proposition 2.1. There are four idempotents
0 = (0, 0), 1 = (1, 1), e1 = (1, 0), e2 = (0, 1) in R. To show that R is 0-
symmetric, assume that (a1, a2)(b1, b2)(c1, c2) = (0, 0) in R. Then aibici = 0 in
D for each i = 1, 2. If ai = 0, then it is obvious that aicibi = 0. Assume ai 6= 0.
Then since each ai are invertible, bici = 0. It follows that cibi = 0 since R is
reversible, and hence aicibi = 0. Consequently, (a1, a2)(c1, c2)(b1, b2) = (0, 0),
and so R is 0-symmetric. (Note that it was already shown in [1, Theorem I.3]
that every reduced ring is symmetric.) Assume that R is 1-symmetric. Since D
is not commutative, there exist nonzero elements a, b in D such that ab 6= ba.
Consider (a, 1)(b−1, 1)(ba−1, 1) = (1, 1). Since R is 1-symmetric by assumption,
(a, 1)(ba−1, 1)(b−1, 1) = (1, 1), and so aba−1b−1 = 1, which yields a contradic-
tion. Therefore, R is not 1-symmetric. By the similar argument, one can show
that R is neither e1-symmetric nor e2-symmetric.

We now take our focus on 1-symmetric property. Note that either 0-symmetric
or 1-reversible is not sufficient for 1-symmetric, as shown in Example 2.6.

We here describe a necessary and sufficient condition for the 1-symmetric
property.

Theorem 2.7. Let R be a ring with the unity 1. R is 1-symmetric if and only
if R is 1-reversible and U(R) is abelian.

Proof. Suppose that R is 1-symmetric. Then clearly, R is 1-reversible. Let a, b
be elements of U(R). Then there exists u ∈ U(R) such that u(ab) = (ab)u = 1.
Since R is 1-symmetric, it follows that u(ba) = (ba)u = 1. Thus ab = u−1 = ba,
and so U(R) is abelian. Conversely, suppose that R is 1-reversible and U(R) is
abelian. Let abc = 1 in R. Then cab = 1 = bca since R is 1-reversible. Thus
ab = c−1 and bc = a−1. Therefore ac = ca since a, c are contained in the abelain
group U(R), and so acb = 1. It follows that R is 1-symmetric. �

Corollary 2.8. If R is a symmetric ring such that U(R) is abelian, then R is
1-symmetric.

Proof. Since R is symmetric, R is reversible, and then R is 1-reversible by
Proposition 2.1. Hence it follows from Theorem 2.7 R is 1-symmetric. �

Proposition 2.9. Let R be a ring with the unity 1. If R is 1-symmetric, then
eR is e-symmetric for every central idempotent e.

Proof. Suppose that R is 1-symmetric. Let e be a central idempotent of R
and denote S = eR. Since e is central, S = eRe = Re = eR. Assume that
(ex)(ey)(ez) = e, where x, y, z ∈ R. Denote a = ex+(1−e), b = ey+(1−e)and
c = ez+(1−e). Then, since e be central, abc = (ex)(ey)(ez)+(1−e) = 1. Since
R is 1-symmetric, it follows that acb = 1, and so (ex)(ez)(ey)+(1−e) = acb = 1.
Therefore, (ex)(ez)(ey) = e. Consequently S is e-symmetric. �
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In virtue of Proposition 2.9, it seems that a homomorphic image of every 1-
symmetric ring might be 1-symmetric. Unexpectedly, it is not true in general.
Nevertheless, it can be true if the kernel is contained in the Jacobson radical of
the ring; we investigate it with the following lemma.

Lemma 2.10. Let R be a ring with the unity 1, and let φ : R → S be a
homomorphism from R into S with kernel K. If U(R) is abelian and K ⊆ J(R),
then R is 1-reversible if and only if φ(R) is φ(1)-reversible.

Proof. Suppose that R is 1-reversible and φ(x)φ(y) = φ(1) for x, y ∈ R. Then
xy − 1 ∈ K ⊆ J(R), and so xy ∈ 1 + J(R) ⊆ U(R). It follows that (xy)r =
1 = r(xy) for some r ∈ U(R). Since R is 1-reversible, y(rx) = 1 = (rx)y, that
is, y ∈ U(R) and hence x ∈ U(R). Since U(R) is abelian, φ(y)φ(x) = φ(1).
Consequently, φ(R) is φ(1)-reversible.

Conversely, suppose that φ(R) is φ(1)-reversible and xy = 1 in R. Then
φ(xy) = φ(x)φ(y) = φ(1). Since φ(R) is φ(1)-reversible, φ(yx) = φ(y)φ(x) =
φ(1). It follows that xy − 1, yx − 1 ∈ K ⊆ J(R), and so xy, yx ∈ 1 + J(R) ⊆
U(R). Therefore, (xy)s = 1 = t(yx) for some s, t ∈ U(R), which yields that
ys = ty = x−1 and so x ∈ U(R). It follows from xy ∈ U(R) that y ∈ U(R).
Since U(R) is abelian, yx = 1. Consequently, R is 1-reversible. �

Corollary 2.11. Let R be a ring with the unity, and let K be an ideal of R such
that K ⊆ J(R). If R is 1-symmetric then the factor ring R/K is 1̄-symmetric,
where 1̄ denotes the unity of R/K.

Proof. Let φ : R −→ R/K be the canonical homomorphism from R onto R/K.
Suppose that R is 1-symmetric. Then it is easy to see that U(φ(R)) is contained
in φ(U(R)). Since U(R) is abelian, U(φ(R)) is abelian. From Lemma 2.10, φ(R)
is φ(1)-reversible. It now follows from Theorem 2.7 that φ(R) is φ(1)-symmetric,
that is, R/K is 1̄-symmetric. �

The converse of Corollary 2.11 may not be true, as shown in the next example.

Example 2.12. Let K be a field and consider

R =

{(
a b
0 c

)
: a, b, c ∈ K

}
Then J(R) =

{(
0 b
0 0

)
: b ∈ K

}
, and R is 1-reversible but U(R) is not abelian.

Thus R is not 1-symmetric. However, R/J(R) is clearly 1-symmetric, because
R/J(R) is isomorphic to K ×K.

3. 1-symmetric semiperfect rings

In this section, we consider a certain class of rings, in which every 1-symmetric
ring is commutative. As consequences of our observation in the previous section,
we give some equivalent conditions to the commutativity for some classes of
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semiperfect rings in terms of the 1-symmetric property, as well as the symmetric
property for some mutually orthogonal local idempotent elements.

We first remark immediate consequences of Theorem 2.7.

Lemma 3.1. Let R be a semiperfect ring. Then, R is 1-symmetric if and only
if U(R) is abelian.

Proof. As found in Lam [4, Proposition (20.8)], every semilocal ring is 1-reversible.
The result now follows from Theorem 2.7, since every semiperfect ring is a
semilocal ring. �

Lemma 3.2. Let R be a finite direct sum of local rings. Then the following
conditions are equivalent:

(1) R is 1-symmetric.
(2) U(R) is abelian.
(3) R is commutative.

Proof. Let R = R1 ⊕ · · · ⊕ Rn be the direct sum of local rings R1, ..., Rn. By
Theorem 2.7, (1) implies (2). To show that (2) implies (3), suppose that U(R)
is abelian. Since U(R) = U (R1) ⊕ · · · ⊕ U (Rn), each U (Ri) is abelian. Since
each Ri is a local ring, for each x ∈ Ri either x ∈ U (Ri) or 1− x ∈ U (Ri). It
follows that every Ri is commutative, and so R = R1⊕· · ·⊕Rn is commutative.
It is now obvious that (3) implies (1). �

It was shown in [4, Theorem (23.6)] that a ring R is semiperfect if and only if
the unity 1 can be decomposed into some mutually orthogonal local idempotents
e1, e2, . . . , en as 1 = e1 + e2 + · · ·+ en.

We then characterize the commutativity for a semiperfect ring in terms of
symmetric property for those mutually orthogonal local idempotents.

Proposition 3.3. Let R be a semiperfect ring, and 1 = e1 + e2 + · · · + en a
decomposition of 1 into orthogonal local idempotents e1, e2, . . . , en. Then, R is
commutative if and only if R is ei-symmetric for all i = 1, 2, . . . , n.

Proof. Suppose that R is ei-symmetric for all i = 1, . . . , n. Since R is ei-
reversible, all ei are central for all i by Proposition 2.2, and so R = e1R ⊕
· · · ⊕ enR is a finite direct sum of the local rings eiR = eiRei. Since R is
ei-symmetric, so eiR is also ei-symmetric. Therefore, U (eiR) is abelian for all
i = 1, . . . , n by Theorem 2.7, since ei is the unity of eiR. It follows that U(R) =
U (eIR) ⊕ · · · ⊕ U (enR) is also abelian. Consequently, that R is commutative
from Lemma 3.2. The converse is obvious. �

We also characterize the commutativity for a semiperfect ring in terms of
1-symmetric property.

Corollary 3.4. Let R be a semiperfect ring. Then, R is commutative if and
only if R is abelian and R is 1-symmetric.
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Proof. Suppose that R is abelian and R is 1-symmetric. Since R is a semiperfect
ring, 1 = e1+ · · ·+en for some mutually orthogonal local idempotents e1, . . . , en
of R. Since R is abelian, each ei is central, and so each eiR = eiRei is a local
ring. Therefore, R = e1R⊕· · ·⊕enR is a finite direct sum of the local rings. Since
U(R) is abelian, it now follows from Corollary 3.2 that R is commutative. �

Corollary 3.5. Let R be a semiperfect abelian ring. Then the following condi-
tions are equivalent:

(1) R is 1-symmetric.
(2) U(R) is abelian.
(3) R is commutative.

Proof. The result is an immediate consequence of Lemma 3.1 and Corollary 3.4.
�

Note that the result of Corollary 3.5 may not be true in general. The following
example provides a counter-example for it.

Example 3.6. Let R = F [x] be the polynomial ring with an indeterminate x
over a field F and δ be the derivation on R defined by formal differentiation
with respect to x. Let S = R[y; δ] be the differential polynomial ring where x
and y are commuting independent variables. Since there is no zero-divisor in
S, S is 0-symmetric. We observe that the only idempotents of S are 0, 1 and
U(S) = U(F ) is abelian, which implies that S is 1-symmetric. Clearly, S is not
commutative.

Question. Is every 1-symmetric semiperfect ring is commutative?
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