East Asian Math. J. Vol. 34 (2018), No. 5, pp. 587–595 http://dx.doi.org/10.7858/eamj.2018.038

NON-HOPFIAN SQ-UNIVERSAL GROUPS

Donghi Lee

ABSTRACT. In [9], Lee and Sakuma constructed 2-generator non-Hopfian groups each of which has a specific presentation $\langle a, b | R \rangle$ satisfying small cancellation conditions C(4) and T(4). In this paper, we prove the SQ-universality of those non-Hopfian groups.

1. Introduction

Recall that a group G is called SQ-universal if every countable group can be embedded in a quotient of G. Being SQ-universal is a group-theoretic property that is traditionally thought as measuring "largeness" of a group, since any SQ-universal group contains an infinitely generated free subgroup and has uncountably many pairwise non-isomorphic quotients.

Examples of SQ-universal groups include the free group of rank 2 [6], various HNN-extensions and amalgamated free products [3, 10, 13], groups of deficiency 2 [2], non-elementary hyperbolic groups [12], non-elementary relatively hyperbolic groups [1], etc. For finitely presented small cancellation groups, most C(3) - T(6) groups [7], and all C(p) - T(q) groups [4] with (p,q) being positive integers such that 1/p + 1/q < 1/2 are SQ-universal. On the other hand, for infinitely presented small cancellation groups, Gruber [5] proved the SQ-universality of C(6) groups.

Motivated by Gruber's direct proof of the SQ-universality of C(6) groups, we prove the SQ-universality of the non-Hopfian groups constructed in [9]. Recall that the simplest non-Hopfian group G in [9] has the presentation

$$G = \langle a, b \mid u_{r_0} = u_{r_1} = \dots = 1 \rangle$$

which satisfies small cancellation conditions C(4) - T(4). Here, u_{r_i} is the single relator of the upper presentation $\langle a, b | u_{r_i} \rangle$ of the 2-bridge link group of slope r_i , where $r_0 = [4, 3, 3]$ and $r_i = [4, 2, (i-1)\langle 3 \rangle, 4, 3]$ in continued fraction expansion for every integer $i \geq 1$. Recall that for $(m_1, \ldots, m_k) \in (\mathbb{Z}_+)^k$,

©2018 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received May 16, 2018; Accepted July 3, 2018.

²⁰¹⁰ Mathematics Subject Classification. Primary 20F06.

Key words and phrases. non-Hopfian group, small cancellation condition, SQ-universality. This work was supported by a 2-Year Research Grant of Pusan National University.

DONGHI LEE

$$[m_1, m_2, \dots, m_k] := rac{1}{m_1 + rac{1}{m_2 + \cdots + rac{1}{m_k}}}.$$

Recall also that the symbol " $(i-1)\langle 3 \rangle$ " represents i-1 successive 3's if $i-1 \geq 1$, whereas " $0\langle 3 \rangle$ " means that 3 does not occur in that place, so that $r_1 = [4, 2, 0\langle 3 \rangle, 4, 3] = [4, 2, 4, 3].$

The following is the main result of this paper.

Theorem 1.1. Let $r_0 = [4,3,3]$, and let $r_i = [4,2,(i-1)\langle 3 \rangle, 4,3]$ for every integer $i \geq 1$. Then the group $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$ is SQ-universal.

In the proof of Theorem 1.1, the following definition and result from [12] play an important role.

Definition 1.2 ([12]). Let G be a group and H a subgroup of G. Then H has the congruence extension property (CEP) if for every normal subgroup N of H (i.e., N is normal in H), we have $\langle N \rangle^G \cap H = N$, where $\langle N \rangle^G$ denotes the normal closure of N in G. The group G has property F(2) if there exists a subgroup H of G that is a free group of rank 2 and that has the CEP.

Proposition 1.3 ([12]). If a group G has property F(2), then G is SQ-universal.

In the viewpoint of Proposition 1.3, we will show that the group $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$ has property F(2) to prove Theorem 1.1. To be precise, putting $s_0 = [5, 4, 4]$ and $s_1 = [5, 3, 5, 4]$, we will show that the subgroup $H = \langle u_{s_0}, u_{s_1} \rangle$ of G is a free group of rank 2 and has the CEP. By looking at the proof of Theorem 1.1 in Section 3, it is not hard to see that a similar result holds not only for $r_0 = [4, 3, 3]$ but also for $r_0 = [m + 1, m, m]$ with m being any integer greater than 3. Thus we only state its general form without a detailed proof.

Theorem 1.4. Suppose that m is an integer with $m \ge 3$. Let $r_0 = [m+1, m, m]$, and let $r_i = [m+1, m-1, (i-1)\langle m \rangle, m+1, m]$ for every integer $i \ge 1$. Then the group $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$ is SQ-universal.

The present paper is organized as follows. In Section 2, we recall the upper presentation of a 2-bridge link group, and a basic fact established in [8] concerning the single relator u_r of the upper presentation. We also recall key facts from [9] obtained by applying small cancellation theory to $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$. Section 3 is devoted to the proof of Theorem 1.1.

588

2. Preliminaries

2.1. Upper presentations of 2-bridge link groups

Consider the discrete group, H, of isometries of the Euclidean plane \mathbb{R}^2 generated by the π -rotations around the points in the lattice \mathbb{Z}^2 . Set $(S^2, P) := (\mathbb{R}^2, \mathbb{Z}^2)/H$ and call it the *Conway sphere*. Then S^2 is homeomorphic to the 2-sphere, and P consists of four points in S^2 . We also call S^2 the Conway sphere. Let $S := S^2 - P$ be the complementary 4-times punctured sphere. For each $r \in \hat{\mathbb{Q}} := \mathbb{Q} \cup \{\infty\}$, let α_r be the unoriented simple loop in S obtained as the projection of any straight line in $\mathbb{R}^2 - \mathbb{Z}^2$ of slope r. Then α_r is essential in S, i.e., it does not bound a disk nor a once-punctured disk in S. Conversely, any essential simple loop in S is isotopic to α_r for a unique $r \in \hat{\mathbb{Q}}$. Then r is called the *slope* of the simple loop. Similarly, any simple arc δ in S^2 joining two different points in P such that $\delta \cap P = \partial \delta$ is isotopic to the image of a line in \mathbb{R}^2 of some slope $r \in \hat{\mathbb{Q}}$ which intersects \mathbb{Z}^2 . We call r the *slope* of δ . Thus, for every slope $r \in \hat{\mathbb{Q}}$, there exist two arcs and one loop of slope r in (S^2, P) (all unoriented).

A trivial tangle is a pair (B^3, t) , where B^3 is a 3-ball and t is a union of two arcs properly embedded in B^3 which is parallel to a union of two mutually disjoint arcs in ∂B^3 . By a rational tangle, we mean a trivial tangle (B^3, t) which is endowed with a homeomorphism from $(\partial B^3, \partial t)$ to (S^2, \mathbf{P}) . Through the homeomorphism we identify the boundary of a rational tangle with the Conway sphere. Thus the slope of an essential simple loop in $\partial B^3 - t$ is defined. We define the *slope* of a rational tangle to be the slope of an essential loop on $\partial B^3 - t$ which bounds a disk in B^3 separating the components of t. We denote a rational tangle of slope r by $(B^3, t(r))$.

For each $r \in \mathbb{Q}$, the 2-bridge link K(r) of slope r is the sum of the rational tangle $(B^3, t(\infty))$ of slope ∞ and the rational tangle $(B^3, t(r))$ of slope r. Recall that $\partial(B^3 - t(\infty))$ and $\partial(B^3 - t(r))$ are identified with \mathbf{S} so that α_{∞} and α_r bound disks in $B^3 - t(\infty)$ and $B^3 - t(r)$, respectively. By van-Kampen's theorem, the link group $G(K(r)) := \pi_1(S^3 - K(r))$ is obtained as follows:

$$G(K(r)) \cong \pi_1(\mathbf{S}) / \langle \langle \alpha_{\infty}, \alpha_r \rangle \rangle \cong \pi_1(B^3 - t(\infty)) / \langle \langle \alpha_r \rangle \rangle.$$

Let $\{a, b\}$ be the standard meridian generator pair of $\pi_1(B^3 - t(\infty), x_0)$ as described in [8, Section 3]. Then $\pi_1(B^3 - t(\infty))$ is identified with the free group F(a, b) with basis $\{a, b\}$. For a positive rational number r = q/p, where p and q are relatively prime positive integers, let u_r be the word in $\{a, b\}$ obtained as follows. Set $\epsilon_i = (-1)^{\lfloor iq/p \rfloor}$, where $\lfloor x \rfloor$ is the greatest integer not exceeding x.

(1) If p is odd, then

$$u_{q/p} = a\hat{u}_{q/p}b^{(-1)^{q}}\hat{u}_{q/p}^{-1},$$

where $\hat{u}_{q/p} = b^{\epsilon_1} a^{\epsilon_2} \cdots b^{\epsilon_{p-2}} a^{\epsilon_{p-1}}$.

(2) If p is even, then

$$u_{q/p} = a\hat{u}_{q/p}a^{-1}\hat{u}_{q/p}^{-1},$$

where $\hat{u}_{q/p} = b^{\epsilon_1} a^{\epsilon_2} \cdots a^{\epsilon_{p-2}} b^{\epsilon_{p-1}}$.

Then $u_r \in F(a,b) \cong \pi_1(B^3 - t(\infty))$ is represented by the simple loop α_r , and we obtain the following two-generator and one-relator presentation of a 2-bridge link group:

$$G(K(r)) \cong \pi_1(B^3 - t(\infty)) / \langle \langle \alpha_r \rangle \rangle \cong \langle a, b \, | \, u_r \rangle.$$

This presentation is called the *upper presentation* of the 2-bridge link group.

2.2. A basic fact concerning the relator u_r of the upper presentation

Throughout this paper, a cyclic word is defined to be the set of all cyclic permutations of a cyclically reduced word. By (v) we denote the cyclic word associated with a cyclically reduced word v. Also the symbol " \equiv " denotes the *letter-by-letter equality* between two words or between two cyclic words. Now we recall definitions and basic facts from [8] which are needed in the proof of Theorem 1.1 in Section 3.

A word v is called a *positive* (or *negative*) word, if all letters in v have positive (or negative, respectively) exponents.

Definition 2.1. Let v be a reduced word in $\{a, b\}$. Decompose v into

$$v \equiv v_1 v_2 \cdots v_t,$$

where, for each i = 1, ..., t - 1, v_i is a positive (or negative) subword, and v_{i+1} is a negative (or positive, respectively) subword. Then the sequence of positive integers $S(v) := (|v_1|, |v_2|, ..., |v_t|)$ is called the *S*-sequence of v.

A reduced word w in $\{a, b\}$ is said to be *alternating* if $a^{\pm 1}$ and $b^{\pm 1}$ appear in w alternately, to be precise, neither $a^{\pm 2}$ nor $b^{\pm 2}$ appears in w. Also a cyclically reduced word w in $\{a, b\}$ is said to be *cyclically alternating*, i.e., all the cyclic permutations of w are alternating. In particular, u_r is a cyclically alternating word in $\{a, b\}$.

Lemma 2.2 ([8, Propositions 4.3 and 4.4]). For a rational number $r = [m_1, m_2, \ldots, m_k]$ with $k \ge 2$ and $m_2 \ge 2$, putting $m = m_1$, we have

$$S(u_r) = (m+1, (m_2 - 1)\langle m \rangle, m+1, \dots, m+1, m_2 \langle m \rangle),$$

where the symbol " $t\langle m \rangle$ " represents t successive m's.

2.3. Small cancellation theory applied to $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$

A subset R of the free group F(a, b) is called *symmetrized*, if all elements of R are cyclically reduced and, for each $w \in R$, all cyclic permutations of w and w^{-1} also belong to R.

590

Definition 2.3. Suppose that R is a symmetrized subset of F(a, b). A nonempty word v is called a *piece* (with respect to R) if there exist distinct $w_1, w_2 \in R$ such that $w_1 \equiv vc_1$ and $w_2 \equiv vc_2$. The small cancellation conditions C(p) and T(q), where p and q are integers such that $p \geq 2$ and $q \geq 3$, are defined as follows (see [11]).

- (1) Condition C(p): If $w \in R$ is a product of n pieces, then $n \ge p$.
- (2) Condition T(q): For $w_1, \ldots, w_n \in R$ with no successive elements w_i, w_{i+1} an inverse pair $(i \mod n)$, if n < q, then at least one of the products $w_1w_2, \ldots, w_{n-1}w_n, w_nw_1$ is freely reduced without cancellation.

The following proposition enables us to apply small cancellation theory to the presentation $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$ in Theorem 1.1.

Lemma 2.4 ([9, Lemma 3.8]). Let R be the symmetrized subset of F(a, b) generated by the set of relators $\{u_{r_i} | i \ge 0\}$ of the presentation $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$ in Theorem 1.1. Then R satisfies C(4) and T(4).

We may interpret [9, Claim 2 in the proof of Lemma 3.8] as the following useful format.

Lemma 2.5. Let r_i and R be as in Lemma 2.4. If a subword w of the cyclic word $(u_{r_i}^{\pm 1})$ is a product of no less than 2 pieces with respect to R, then S(w) contains a term 4.

3. Proof of Theorem 1.1

Let $s_0 := [5, 4, 4]$ and $s_1 := [5, 3, 5, 4]$ be rational numbers. Then both u_{s_0} and u_{s_1} are cyclically alternating words in $\{a, b\}$ which begin with a and end with b^{-1} . Also by Lemma 2.2,

$$S(u_{s_0}) = (6, 5, 5, 5, 6, \dots, 6, 5, 5, 5, 5),$$

$$S(u_{s_1}) = (6, 5, 5, 6, \dots, 6, 5, 5, 5).$$

So we can see that for any product p of elements in $\{u_{s_0}, u_{s_1}\}^{\pm 1}$, the cyclic word (p) has the form

$$(p) \equiv (w_1 b^{\pm 2} w_2 b^{\pm 2} \cdots w_n b^{\pm 2}), \tag{(\dagger)}$$

where w_i is an alternating word in $\{a, b\}$ such that w_i begins and ends with $a^{\pm 1}$ and such that $S(w_i)$ consists of 5 and 6, for every i = 1, 2, ..., n.

Let $H := \langle u_{s_0}, u_{s_1} \rangle$ be a subgroup of $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$. We will show that G has property F(2) by showing that H is a free group of rank 2 and has the CEP.

Lemma 3.1. The subgroup $H = \langle u_{s_0}, u_{s_1} \rangle$ of $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$ is a free group of rank 2.

Proof. Suppose that there exists some nontrivial product p of elements in $\{u_{s_0}, u_{s_1}\}^{\pm 1}$ equal to the identity in G. Then there is a reduced van Kampen diagram Δ over $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$ such that $(\phi(\partial \Delta)) \equiv (p)$ (see [11]). Since

 Δ is a [4,4]-map by Lemma 2.4, we have by the Curvature Formula of Lyndon and Schupp (see [11, Corollary V.3.4])

$$\sum_{v \in \partial \Delta} (3 - d(v)) \ge 4.$$

This implies that there exists a vertex of degree 2 on $\partial \Delta$, so that $(\phi(\partial \Delta))$ contains a subword of some $(u_{r_i}^{\pm 1})$ which cannot be expressed as a product of less than 2 pieces with respect to the symmetrized subset R in Lemma 2.4 (see [8, Section 6]). Then, since $(\phi(\partial \Delta)) \equiv (p)$, the cyclic word (p) contains a subword w of the cyclic word $(u_{r_i}^{\pm 1})$ such that S(w) contains a term 4 by Lemma 2.5. But this is obviously a contradiction to (\dagger) .

Now to prove that H has the CEP, let c and d be symbols not in F(a, b). Put

$$R = \{u_{r_0}, u_{r_1}, u_{r_2}, \dots\} \subseteq F(a, b),$$
$$W = \{c^{-1}u_{s_0}, d^{-1}u_{s_1}\} \subseteq F(a, b, c, d).$$

Here, F(a, b, c, d) denotes the free group with basis $\{a, b, c, d\}$. Then clearly

$$G = \langle a, b \mid R \rangle \cong \langle a, b, c, d \mid W \cup R \rangle.$$

Under this isomorphism, the subgroup $H = \langle u_{s_0}, u_{s_1} \rangle$ of G maps to $\langle c, d \rangle$ which is a subgroup of $\langle a, b, c, d | R \cup W \rangle$. From now on, we consider the presentation $\langle a, b, c, d | W \cup R \rangle$ for G and $\langle c, d \rangle$ for H.

Lemma 3.2. Let G and H be as above, and let N be a normal subgroup of H. Then $\langle N \rangle^G \cap H = N$.

Proof. Suppose on the contrary that there exists $g \in (\langle N \rangle^G \cap H) \setminus N$. Let L be the set of words in $\{c, d\}$ representing elements of N, and consider the presentation

$$\langle a, b, c, d \mid L \cup W \cup R \rangle$$

Let w be a word in $\{c, d\}$ representing g. Since $g \in \langle N \rangle^G \cap H$, w is equal to the identity in the group $\langle a, b, c, d | L \cup W \cup R \rangle$. Then there is a reduced van Kampen diagram Δ over $\langle a, b, c, d | L \cup W \cup R \rangle$ such that $(\phi(\partial \Delta)) \equiv (w)$. Assume that g, w and Δ are chosen such that the (L; W; R)-lexicographic area of Δ is minimal for all possible choices (i.e., we first minimize the number of faces labelled by elements of L, then the number of faces labelled by elements of W and then the number of faces labelled by elements of R), and among these choices, the number of edges of Δ is minimal.

The following claim may be immediately adopted from [5, Claim 1 in the proof of Proposition 2.15], since C(6)-condition was used nowhere in its proof.

Claim 1. Δ has the following properties:

a) Δ is a simple disk diagram, and w is cyclically reduced.

b) No L-face intersects $\partial \Delta$. Therefore, every edge of $\partial \Delta$ is contained in a W-face.

592

c) Every L-face is simply connected, and no two L-faces intersect. Therefore, every L-face shares all its boundary edges with W-faces. We say it is surrounded by W-faces.

d) The intersection of two W-faces does not contain a $\{c, d\}$ -edge.

Let π_1, \ldots, π_t denote the *L*-faces in Δ . By Claim 1c), each π_i is surrounded by *W*-faces, say $\sigma_{i,1}, \ldots, \sigma_{i,h_i}$. Since every *W*-face has only one $\{c, d\}$ -edge, if $i \neq i'$ then $\sigma_{i,j} \neq \sigma_{i',j'}$ for every *j* and *j'*.

Put

$$S = \{u_{s_0}, u_{s_1}\} \subseteq F(a, b).$$

As illustrated in Figure 1, for each $i = 1, \ldots, t$, we may replace a subdiagram $D_i = \pi_i \cup \sigma_{i,1} \cup \cdots \cup \sigma_{i,h_i}$ with $D'_i = \tau_{i,1} \cup \cdots \cup \tau_{i,h_i}$ consisting of S-faces $\tau_{i,1}, \ldots, \tau_{i,h_i}$ such that D_i and D'_i have the same boundary label. Here, an S-face $\tau_{i,j}$ is chosen in such a way that if $(\phi(\partial \sigma_{i,j})) \equiv (c^{\pm 1}u^{\pm 1}_{s_0})$ then $(\phi(\partial \tau_{i,j})) \equiv (u^{\pm 1}_{s_0})$; if $(\phi(\partial \sigma_{i,j})) \equiv (d^{\pm 1}u^{\pm 1}_{s_1})$ then $(\phi(\partial \tau_{i,j})) \equiv (u^{\pm 1}_{s_1})$. In this way, we may remove all L-faces from Δ to obtain a new diagram Δ' . Then Δ' is regarded as a reduced van Kampen diagram over the presentation

$$\langle a, b, c, d \mid S \cup W \cup R \rangle$$

and has the same boundary label as Δ . So $(\phi(\partial \Delta')) \equiv (w)$. Let \mathcal{R} be the symmetrized subset of the free group F(a, b, c, d) generated by $S \cup R$. As mentioned in [9, Introduction], a similar statement as Lemma 2.4 holds for $r_0 = [5, 4, 4]$. So \mathcal{R} satisfies small cancellation condition C(4) - T(4) due to Lemma 2.4 together with the fact that $S(u_{r_i})$ consists of 4 and 5, while $S(u_{s_i})$ consists of 5 and 6.

FIGURE 1. Replacing a subdiagram D_i which consists of an L-face π_i and W-faces $\sigma_{i,1}, \ldots, \sigma_{i,h_i}$ surrounding π_i with D'_i which consists of S faces $\tau_{i,1}, \ldots, \tau_{i,h_i}$ so that D_i and D'_i have the same boundary label.

DONGHI LEE

Claim 2. Δ' is a [4, 4]-map (for the definition and convention, see [8, Section 6]).

Proof of Claim 2. Clearly, every interior vertex of Δ' has degree at least 4. Now we show that every face in Δ' has at least 4 edges in its boundary, by showing that a path in the intersection of any two faces in Δ' is a piece with respect to \mathcal{R} . Clearly a path in the intersection of two *R*-faces, two *S*-faces, an *R*-face and an *S*-face, or an *R*-face and a *W*-face in Δ' is a piece with respect to \mathcal{R} . By Claim 1d), the intersection of two *W*-faces in Δ , so in Δ' , does not contain a $\{c, d\}$ -edge, and hence a path in the intersection of two *W*-faces is a piece with respect to \mathcal{R} .

It remains to consider the intersection of an S-face and a W-face in Δ' . Note the intersection of an S-face and a W-face in Δ' corresponds to that of two Wfaces in Δ , since every S-face was obtained by replacing a W-face surrounding an L-face in Δ . So if a path in the intersection of an S-face and a W-face in Δ' is a product of no less than 2 pieces, then a path in the corresponding intersection of two W-faces in Δ is a product of no less than 2 pieces. But then those two W-faces form a reducible pair in Δ , which is a contradiction to the assumption that Δ is reduced. Therefore a path in the intersection of an S-face and a W-face in Δ' is a piece with respect to \mathcal{R} . Since \mathcal{R} satisfies C(4), Δ' is a [4,4]-map.

By Claim 2, we obtain that by the Curvature Formula of Lyndon and Schupp,

$$\sum_{v \in \partial \Delta'} (3 - d(v)) \ge 4$$

so that there exists a vertex of degree 2 on $\partial \Delta'$. This together with Claim 1b) implies that $(\phi(\partial \Delta'))$ contains a subword of the cyclic word $(c^{\pm 1}u_{s_0}^{\pm 1})$ or the cyclic word $(d^{\pm 1}u_{s_1}^{\pm 1})$ which cannot be expressed as a product of less than 2 pieces. Then, since $(\phi(\partial \Delta')) \equiv (w)$, the cyclic word (w) contains a nontrivial subword of $(u_{s_0}^{\pm 1})$ or $(u_{s_1}^{\pm 1})$. But since $u_{s_0}^{\pm 1}$ and $u_{s_1}^{\pm 1}$ are reduced words in $\{a, b\}$ while w is a cyclically reduced word in $\{c, d\}$ by Claim 1a), this is obviously a contradiction, completing the proof of Lemma 3.2.

By Lemmas 3.1 and 3.2, $G = \langle a, b | u_{r_0} = u_{r_1} = \cdots = 1 \rangle$ has property F(2), which completes the proof of Theorem 1.1 due to Proposition 1.3.

Acknowledgement

The author would like to thank the anonymous referee for very careful reading and valuable remarks.

References

- G. Arzhantseva, A. Minasyan and D. Osin, The SQ-universality and residual properties of relatively hyperbolic groups, J. Algebra **315** (2007), 165–177.
- [2] B. Baumslag and S. J. Pride, Groups with two more generators than relators, J. London Math. Soc. 17 (3) (1978), 425–426.

- [3] B. Fine and M. Tretkoff, On the SQ-universality of HNN groups, Proc. Amer. Math. Soc. 73 (3) (1979), 283–290.
- [4] S. M. Gersten and H. Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990), 305–334.
- [5] D. Gruber, Infinitely presented C(6)-groups are SQ-universal, J. London Math. Soc. 92 (2015), 178–201.
- [6] G. Higman, B. "Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247–254.
- [7] J. Howie, On the SQ-universality of T(6)-groups, Forum Math. 1 (3) (1989), 251–272.
- [8] D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: homotopically trivial simple loops on 2-bridge spheres, Proc. London Math. Soc. 104 (2012), 359–386.
- D. Lee and M. Sakuma, A family of two generator non-Hopfian groups, Int. J. Algebra Comput. 27 (2017), 655–675.
- [10] K. I. Lossov, SQ-universality of free products with amalgamated finite subgroups, Sibirsk. Mat. Zh. 27 (6) (1986), 128–139, 225 (in Russian).
- [11] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977.
- [12] A. Yu. Olshanski, The SQ-universality of hyperbolic groups, Sbornik: Mathematics 186 (8) (1995), 1199–1211.
- [13] G. S. Sacerdote and P. E. Schupp, SQ-universality in HNN groups and one relator groups, J. London Math. Soc. 7 (2) (1974), 733–740.

Donghi Le

DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY SAN-30 JANGJEON-DONG, GEUMJUNG-GU, PUSAN, 609-735, KOREA *E-mail address*: donghi@pusan.ac.kr