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NON-HOPFIAN SQ-UNIVERSAL GROUPS

DONGHI LEE

ABSTRACT. In [9], Lee and Sakuma constructed 2-generator non-Hopfian
groups each of which has a specific presentation (a,b| R) satisfying small
cancellation conditions C'(4) and T'(4). In this paper, we prove the SQ-
universality of those non-Hopfian groups.

1. Introduction

Recall that a group G is called SQ-universal if every countable group can
be embedded in a quotient of G. Being SQ-universal is a group-theoretic prop-
erty that is traditionally thought as measuring “largeness” of a group, since
any SQ-universal group contains an infinitely generated free subgroup and has
uncountably many pairwise non-isomorphic quotients.

Examples of SQ-universal groups include the free group of rank 2 [6], various
HNN-extensions and amalgamated free products [3, 10, 13], groups of deficiency
2 [2], non-elementary hyperbolic groups [12], non-elementary relatively hyper-
bolic groups [1], etc. For finitely presented small cancellation groups, most
C(3) — T(6) groups [7], and all C(p) — T(q) groups [4] with (p,q) being posi-
tive integers such that 1/p 4+ 1/¢ < 1/2 are SQ-universal. On the other hand,
for infinitely presented small cancellation groups, Gruber [5] proved the SQ-
universality of C(6) groups.

Motivated by Gruber’s direct proof of the SQ-universality of C(6) groups, we
prove the SQ-universality of the non-Hopfian groups constructed in [9]. Recall
that the simplest non-Hopfian group G in [9] has the presentation

G={a,blu, =t =---=1)

which satisfies small cancellation conditions C(4) —T'(4). Here, u,, is the single
relator of the upper presentation (a,b|u,,) of the 2-bridge link group of slope 7;,
where ro = [4,3,3] and r; = [4,2, (i —1)(3), 4, 3] in continued fraction expansion
for every integer i > 1. Recall that for (mq,...,my) € (Z1)*,
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[my,ma, ... ,mg| =

mi +

Recall also that the symbol “(i — 1)(3)” represents ¢ — 1 successive 3’s if ¢ —
1 > 1, whereas “0(3)” means that 3 does not occur in that place, so that
r = [4,2,0(3),4,3] = [4,2,4,3].

The following is the main result of this paper.

Theorem 1.1. Let ro = [4,3,3], and let r; = [4,2,(i — 1)(3),4,3] for every
integer i > 1. Then the group G = {a,b|ur, = up, = -+ = 1) is SQ-universal.

In the proof of Theorem 1.1, the following definition and result from [12] play
an important role.

Definition 1.2 ([12]). Let G be a group and H a subgroup of G. Then H
has the congruence extension property (CEP) if for every normal subgroup N
of H (i.e., N is normal in H), we have (N) N H = N, where (N)¢ denotes
the normal closure of N in G. The group G has property F(2) if there exists a
subgroup H of G that is a free group of rank 2 and that has the CEP.

Proposition 1.3 ([12]). If a group G has property F(2), then G is SQ-universal.

In the viewpoint of Proposition 1.3, we will show that the group G =
(a,b|up, = up, = --- = 1) has property F(2) to prove Theorem 1.1. To be
precise, putting so = [5,4,4] and s; = [5,3,5,4], we will show that the sub-
group H = (us,,us,) of G is a free group of rank 2 and has the CEP. By
looking at the proof of Theorem 1.1 in Section 3, it is not hard to see that a
similar result holds not only for ro = [4,3,3] but also for rq = [m + 1,m,m)|
with m being any integer greater than 3. Thus we only state its general form
without a detailed proof.

Theorem 1.4. Suppose that m is an integer withm > 3. Letrg = [m+1,m,m],
and let r; = [m+ 1,m — 1, (i — 1){m), m + 1,m] for every integer i > 1. Then
the group G = (a,b|up, = uy, = -+ = 1) is SQ-universal.

The present paper is organized as follows. In Section 2, we recall the upper
presentation of a 2-bridge link group, and a basic fact established in [8] concern-
ing the single relator u,. of the upper presentation. We also recall key facts from
[9] obtained by applying small cancellation theory to G = (a,b|u,, = uy, =

- =1). Section 3 is devoted to the proof of Theorem 1.1.
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2. Preliminaries

2.1. Upper presentations of 2-bridge link groups

Consider the discrete group, H, of isometries of the Euclidean plane R? gen-
erated by the m-rotations around the points in the lattice Z2. Set (S2, P) :=
(R?2,Z%)/H and call it the Conway sphere. Then S? is homeomorphic to the
2-sphere, and P consists of four points in S?. We also call 8% the Conway
sphere. Let S := S? — P be the complementary 4-times punctured sphere. For
each r € @ := QU {00}, let . be the unoriented simple loop in S obtained as
the projection of any straight line in R? — Z2 of slope r. Then «,. is essential
in S, i.e., it does not bound a disk nor a once-punctured disk in S. Conversely,
any essential simple loop in S is isotopic to «,. for a unique r € Q. Then 7 is
called the slope of the simple loop. Similarly, any simple arc & in S? joining two
different points in P such that § N P = 99 is isotopic to the image of a line in
R? of some slope r e Q which intersects Z2. We call r the slope of §. Thus, for
every slope r € Q, there exist two arcs and one loop of slope r in (82, P) (all
unoriented).

A trivial tangle is a pair (B3,t), where B? is a 3-ball and t is a union of
two arcs properly embedded in B? which is parallel to a union of two mutually
disjoint arcs in dB3. By a rational tangle, we mean a trivial tangle (B3,t)
which is endowed with a homeomorphism from (9B3,t) to (82, P). Through
the homeomorphism we identify the boundary of a rational tangle with the
Conway sphere. Thus the slope of an essential simple loop in 0B —t is defined.
We define the slope of a rational tangle to be the slope of an essential loop on
0B? — t which bounds a disk in B3 separating the components of t. We denote
a rational tangle of slope r by (B?,t(r)).

For each r € Q, the 2-bridge link K(r) of slope r is the sum of the rational
tangle (B3,t(00)) of slope oo and the rational tangle (B3,¢(r)) of slope r. Recall
that 9(B? — t(o0)) and O(B? — t(r)) are identified with S so that a., and
bound disks in B3—t(00) and B3—t(r), respectively. By van-Kampen’s theorem,
the link group G(K (r)) := 71 (S® — K(r)) is obtained as follows:

G(K(r)) = mi(8)/{{ace, ar)) 2= m1 (B — t(00)) /{(ar)).

Let {a,b} be the standard meridian generator pair of m(B? — t(c0), o) as
described in [8, Section 3]. Then 71 (B2 —t(c0)) is identified with the free group
F(a,b) with basis {a,b}. For a positive rational number r = ¢/p, where p and
q are relatively prime positive integers, let u, be the word in {a, b} obtained as
follows. Set ¢; = (—1)l%/Pl where |z is the greatest integer not exceeding z.

(1) If p is odd, then

.1

Ug/p = aaq/pb(_l) Uy />

where @q/p =b1q2 - br-2qfr-1,
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(2) If p is even, then

Uy /p = Ay /p@ U

q/p a/p

where ﬂq/p = b1qc2 ... qr-2pcr-1,

Then u, € F(a,b) = m(B? — t(c0)) is represented by the simple loop «,., and
we obtain the following two-generator and one-relator presentation of a 2-bridge
link group:

G(K(r)) = m (B — t(c0))/((ar)) = {a,b] uy).

This presentation is called the upper presentation of the 2-bridge link group.

2.2. A basic fact concerning the relator u, of the upper presentation

Throughout this paper, a cyclic word is defined to be the set of all cyclic permu-
tations of a cyclically reduced word. By (v) we denote the cyclic word associated
with a cyclically reduced word v. Also the symbol “=” denotes the letter-by-
letter equality between two words or between two cyclic words. Now we recall
definitions and basic facts from [8] which are needed in the proof of Theorem 1.1
in Section 3.

A word v is called a positive (or negative) word, if all letters in v have positive
(or negative, respectively) exponents.

Definition 2.1. Let v be a reduced word in {a,b}. Decompose v into

V= V1V2 - - - Vg,

where, for each i = 1,...,t — 1, v; is a positive (or negative) subword, and v; 41
is a negative (or positive, respectively) subword. Then the sequence of positive
integers S(v) := (Jv1], |v2l, ..., |ve]) is called the S-sequence of v.

A reduced word w in {a, b} is said to be alternating if a*' and b*! appear in
w alternately, to be precise, neither a*2 nor b*2 appears in w. Also a cyclically
reduced word w in {a, b} is said to be cyclically alternating, i.e., all the cyclic
permutations of w are alternating. In particular, u, is a cyclically alternating

word in {a,b}.

Lemma 2.2 ([8, Propositions 4.3 and 4.4]). For a rational number r = [my,ma, ...

with k > 2 and mg > 2, putting m = mq, we have
S(uy) = (m+1,(me —1){(m),m+1,...,m+1,ma(m)),

where the symbol “t{m)” represents t successive m’s.

2.3. Small cancellation theory applied to G = {(a,b|up, = up, = -+ =1)

A subset R of the free group F'(a,b) is called symmetrized, if all elements of R
are cyclically reduced and, for each w € R, all cyclic permutations of w and
w™! also belong to R.
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Definition 2.3. Suppose that R is a symmetrized subset of F'(a,b). A nonempty
word v is called a piece (with respect to R) if there exist distinct wy,ws € R
such that w1 = ve; and wy = vep. The small cancellation conditions C(p) and
T(q), where p and ¢ are integers such that p > 2 and ¢ > 3, are defined as
follows (see [11]).
(1) Condition C'(p): If w € R is a product of n pieces, then n > p.
(2) Condition T'(q): Forws,...,w, € R with no successive elements w;, w;1
an inverse pair (¢ mod n), if n < ¢, then at least one of the products
WWa, . . ., Wp_1Wy,, Wywy is freely reduced without cancellation.

The following proposition enables us to apply small cancellation theory to
the presentation G = (a,b| uy, = ur, = --- = 1) in Theorem 1.1.

Lemma 2.4 (]9, Lemma 3.8]). Let R be the symmetrized subset of F(a,b)
generated by the set of relators {u,, |1 > 0} of the presentation G = {(a,b|uy, =
Up, = -+-=1) in Theorem 1.1. Then R satisfies C(4) and T(4).

We may interpret [9, Claim 2 in the proof of Lemma 3.8] as the following
useful format.

Lemma 2.5. Let r; and R be as in Lemma 2.4. If a subword w of the cyclic
word (uXl) is a product of no less than 2 pieces with respect to R, then S(w)
contains a term 4.

3. Proof of Theorem 1.1

Let sg := [5,4,4] and s; := [5,3,5,4] be rational numbers. Then both wuy,
and ug, are cyclically alternating words in {a,b} which begin with a and end
with b~!. Also by Lemma 2.2,

S(us,) = (6,5,5,5,6,...,6,5,5,5,5),
S(us,) = (6,5,5,6,...,6,5,5,5).

So we can see that for any product p of elements in {us,, us, } =, the cyclic word
(p) has the form

(p) = (wlbi2w2bi2 e wnbi2)a (T)

where w; is an alternating word in {a,b} such that w; begins and ends with a*!
and such that S(w;) consists of 5 and 6, for every i = 1,2,...,n.

Let H := (us,,us,) be a subgroup of G = (a,b|up, = up, = --- =1). We

will show that G has property F(2) by showing that H is a free group of rank
2 and has the CEP.

Lemma 3.1. The subgroup H = (us,,us,) of G = (a,b|tupy, = tp, = --- = 1)
s a free group of rank 2.

Proof. Suppose that there exists some nontrivial product p of elements in {us,, us, }EL
equal to the identity in G. Then there is a reduced van Kampen diagram A
over G = (a,b|ur, = up, = --- = 1) such that (¢(9A)) = (p) (see [11]). Since
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A is a [4,4]-map by Lemma 2.4, we have by the Curvature Formula of Lyndon
and Schupp (see [11, Corollary V.3.4])

S (3 d(v) > 4.

vEOA
This implies that there exists a vertex of degree 2 on JA, so that (¢p(0A))
contains a subword of some (urﬂ) which cannot be expressed as a product of
less than 2 pieces with respect to the symmetrized subset R in Lemma 2.4
(see [8, Section 6]). Then, since (¢p(0A)) = (p), the cyclic word (p) contains
a subword w of the cyclic word (uf') such that S(w) contains a term 4 by

Lemma 2.5. But this is obviously a contradiction to (1). O

Now to prove that H has the CEP, let ¢ and d be symbols not in F(a,b).
Put
R = {trg, Upy, Upy, ... } C F(a,b),
W = {c  ugy,d s, } € Fla,b, c,d).
Here, F(a,b,c,d) denotes the free group with basis {a, b, ¢,d}. Then clearly
G = {a,b|R) 2 {(a,b,c,d| W U R).

Under this isomorphism, the subgroup H = (us,, us,) of G maps to (c, d) which
is a subgroup of {a,b,c,d| RUW). From now on, we consider the presentation
(a,b,c,d|W U R) for G and (c,d) for H.

Lemma 3.2. Let G and H be as above, and let N be a normal subgroup of H.
Then (NYY N H = N.

Proof. Suppose on the contrary that there exists g € ((N)¥ N H)\ N. Let
L be the set of words in {c,d} representing elements of N, and consider the
presentation
(a,b,c,d| LUW U R).

Let w be a word in {c, d} representing g. Since g € (N)¢ N H, w is equal to the
identity in the group (a,b, ¢, d| LUWUR). Then there is a reduced van Kampen
diagram A over (a,b,c,d| LUW UR) such that (¢(0A)) = (w). Assume that g,
w and A are chosen such that the (L; W; R)-lexicographic area of A is minimal
for all possible choices (i.e., we first minimize the number of faces labelled by
elements of L, then the number of faces labelled by elements of W and then
the number of faces labelled by elements of R), and among these choices, the
number of edges of A is minimal.

The following claim may be immediately adopted from [5, Claim 1 in the
proof of Proposition 2.15], since C'(6)-condition was used nowhere in its proof.

Claim 1. A has the following properties:

a) A is a simple disk diagram, and w is cyclically reduced.

b) No L-face intersects dA. Therefore, every edge of A is contained in a
W-face.
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c¢) Every L-face is simply connected, and no two L-faces intersect. Therefore,
every L-face shares all its boundary edges with W-faces. We say it is surrounded
by W-faces.

d) The intersection of two W-faces does not contain a {c, d}-edge.

Let m,...,m denote the L-faces in A. By Claim 1c), each m; is surrounded
by W-faces, say 0;1,...,0:n,. Since every W-face has only one {c, d}-edge, if
i # 1 then 0, ; # oy for every j and j'.

Put

S = {us,,us, } € F(a,b).

As illustrated in Figure 1, for each i = 1,...,¢, we may replace a subdiagram
D =mUoi1U---Uoyp, with D} = 7,1 U--- U7, consisting of S-faces
Til,-- -, Tih; such that D; and D} have the same boundary label. Here, an S-face
7;,j is chosen in such a way that if (¢(90; ;)) = (cF'uL!) then (¢(97;;)) = (uil);

if (¢(90;;)) = (dF'u!) then (¢(07;;)) = (uf!). In this way, we may remove
all L-faces from A to obtain a new diagram A’. Then A’ is regarded as a

reduced van Kampen diagram over the presentation
{(a,b,c,d| SUW U R)

and has the same boundary label as A. So (¢(9A")) = (w). Let R be the sym-
metrized subset of the free group F'(a,b, ¢, d) generated by SUR. As mentioned
in [9, Introduction], a similar statement as Lemma 2.4 holds for 7o = [5,4, 4]. So
R satisfies small cancellation condition C(4) —T'(4) due to Lemma 2.4 together
with the fact that S(u,,) consists of 4 and 5, while S(us,) consists of 5 and 6.

@
FOSTS

!

D!

1

D.

1

F1GURE 1. Replacing a subdiagram D; which consists of an
L-face m; and W-faces 0y1,...,0;p, surrounding m; with D]
which consists of S faces 7;,1,..., 75, so that D; and D} have
the same boundary label.
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Claim 2. A’ is a [4,4]-map (for the definition and convention, see [8, Sec-
tion 6]).

Proof of Claim 2. Clearly, every interior vertex of A’ has degree at least 4. Now
we show that every face in A’ has at least 4 edges in its boundary, by showing
that a path in the intersection of any two faces in A’ is a piece with respect to
R. Clearly a path in the intersection of two R-faces, two S-faces, an R-face and
an S-face, or an R-face and a W-face in A’ is a piece with respect to R. By
Claim 1d), the intersection of two W-faces in A, so in A’; does not contain a
{¢, d}-edge, and hence a path in the intersection of two W-faces is a piece with
respect to R.

It remains to consider the intersection of an S-face and a W-face in A’. Note
the intersection of an S-face and a W-face in A’ corresponds to that of two W-
faces in A, since every S-face was obtained by replacing a W-face surrounding
an L-face in A. So if a path in the intersection of an S-face and a W-face
in A’ is a product of no less than 2 pieces, then a path in the corresponding
intersection of two W-faces in A is a product of no less than 2 pieces. But then
those two W-faces form a reducible pair in A, which is a contradiction to the
assumption that A is reduced. Therefore a path in the intersection of an S-face
and a W-face in A’ is a piece with respect to R. Since R satisfies C'(4), A’ is
a [4,4]-map. O

By Claim 2, we obtain that by the Curvature Formula of Lyndon and Schupp,

> (3—d(v) >4,

vEIA’

so that there exists a vertex of degree 2 on OA’. This together with Claim 1b)
implies that (¢(9A’)) contains a subword of the cyclic word (cFlul) or the

S
cyclic word (dﬂusill) which cannot be expressed as a product of less than 2
pieces. Then, since (¢(OA")) = (w), the cyclic word (w) contains a nontrivial
subword of (u£!) or (uf!). But since uf! and uf! are reduced words in {a, b}
while w is a cyclically reduced word in {c,d} by Claim 1a), this is obviously a

contradiction, completing the proof of Lemma 3.2. O

By Lemmas 3.1 and 3.2, G = {(a,b|uy, = ur, = --- = 1) has property F(2),

which completes the proof of Theorem 1.1 due to Proposition 1.3. O
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