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NON-HOPFIAN SQ-UNIVERSAL GROUPS

Donghi Lee

Abstract. In [9], Lee and Sakuma constructed 2-generator non-Hopfian

groups each of which has a specific presentation 〈a, b |R〉 satisfying small

cancellation conditions C(4) and T (4). In this paper, we prove the SQ-
universality of those non-Hopfian groups.

1. Introduction

Recall that a group G is called SQ-universal if every countable group can
be embedded in a quotient of G. Being SQ-universal is a group-theoretic prop-
erty that is traditionally thought as measuring “largeness” of a group, since
any SQ-universal group contains an infinitely generated free subgroup and has
uncountably many pairwise non-isomorphic quotients.

Examples of SQ-universal groups include the free group of rank 2 [6], various
HNN-extensions and amalgamated free products [3, 10, 13], groups of deficiency
2 [2], non-elementary hyperbolic groups [12], non-elementary relatively hyper-
bolic groups [1], etc. For finitely presented small cancellation groups, most
C(3) − T (6) groups [7], and all C(p) − T (q) groups [4] with (p, q) being posi-
tive integers such that 1/p + 1/q < 1/2 are SQ-universal. On the other hand,
for infinitely presented small cancellation groups, Gruber [5] proved the SQ-
universality of C(6) groups.

Motivated by Gruber’s direct proof of the SQ-universality of C(6) groups, we
prove the SQ-universality of the non-Hopfian groups constructed in [9]. Recall
that the simplest non-Hopfian group G in [9] has the presentation

G = 〈a, b |ur0 = ur1 = · · · = 1〉

which satisfies small cancellation conditions C(4)−T (4). Here, uri is the single
relator of the upper presentation 〈a, b |uri〉 of the 2-bridge link group of slope ri,
where r0 = [4, 3, 3] and ri = [4, 2, (i−1)〈3〉, 4, 3] in continued fraction expansion
for every integer i ≥ 1. Recall that for (m1, . . . ,mk) ∈ (Z+)k,
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[m1,m2, . . . ,mk] :=
1

m1 +
1

m2 + .. . +
1

mk

.

Recall also that the symbol “(i − 1)〈3〉” represents i − 1 successive 3’s if i −
1 ≥ 1, whereas “0〈3〉” means that 3 does not occur in that place, so that
r1 = [4, 2, 0〈3〉, 4, 3] = [4, 2, 4, 3].

The following is the main result of this paper.

Theorem 1.1. Let r0 = [4, 3, 3], and let ri = [4, 2, (i − 1)〈3〉, 4, 3] for every
integer i ≥ 1. Then the group G = 〈a, b |ur0 = ur1 = · · · = 1〉 is SQ-universal.

In the proof of Theorem 1.1, the following definition and result from [12] play
an important role.

Definition 1.2 ([12]). Let G be a group and H a subgroup of G. Then H
has the congruence extension property (CEP) if for every normal subgroup N
of H (i.e., N is normal in H), we have 〈N〉G ∩ H = N , where 〈N〉G denotes
the normal closure of N in G. The group G has property F (2) if there exists a
subgroup H of G that is a free group of rank 2 and that has the CEP.

Proposition 1.3 ([12]). If a group G has property F (2), then G is SQ-universal.

In the viewpoint of Proposition 1.3, we will show that the group G =
〈a, b |ur0 = ur1 = · · · = 1〉 has property F (2) to prove Theorem 1.1. To be
precise, putting s0 = [5, 4, 4] and s1 = [5, 3, 5, 4], we will show that the sub-
group H = 〈us0 , us1〉 of G is a free group of rank 2 and has the CEP. By
looking at the proof of Theorem 1.1 in Section 3, it is not hard to see that a
similar result holds not only for r0 = [4, 3, 3] but also for r0 = [m + 1,m,m]
with m being any integer greater than 3. Thus we only state its general form
without a detailed proof.

Theorem 1.4. Suppose that m is an integer with m ≥ 3. Let r0 = [m+1,m,m],
and let ri = [m + 1,m− 1, (i − 1)〈m〉,m + 1,m] for every integer i ≥ 1. Then
the group G = 〈a, b |ur0 = ur1 = · · · = 1〉 is SQ-universal.

The present paper is organized as follows. In Section 2, we recall the upper
presentation of a 2-bridge link group, and a basic fact established in [8] concern-
ing the single relator ur of the upper presentation. We also recall key facts from
[9] obtained by applying small cancellation theory to G = 〈a, b |ur0 = ur1 =
· · · = 1〉. Section 3 is devoted to the proof of Theorem 1.1.
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2. Preliminaries

2.1. Upper presentations of 2-bridge link groups

Consider the discrete group, H, of isometries of the Euclidean plane R2 gen-
erated by the π-rotations around the points in the lattice Z2. Set (S2,P ) :=
(R2,Z2)/H and call it the Conway sphere. Then S2 is homeomorphic to the
2-sphere, and P consists of four points in S2. We also call S2 the Conway
sphere. Let S := S2 −P be the complementary 4-times punctured sphere. For
each r ∈ Q̂ := Q ∪ {∞}, let αr be the unoriented simple loop in S obtained as
the projection of any straight line in R2 − Z2 of slope r. Then αr is essential
in S, i.e., it does not bound a disk nor a once-punctured disk in S. Conversely,
any essential simple loop in S is isotopic to αr for a unique r ∈ Q̂. Then r is
called the slope of the simple loop. Similarly, any simple arc δ in S2 joining two
different points in P such that δ ∩ P = ∂δ is isotopic to the image of a line in
R2 of some slope r ∈ Q̂ which intersects Z2. We call r the slope of δ. Thus, for
every slope r ∈ Q̂, there exist two arcs and one loop of slope r in (S2,P ) (all
unoriented).

A trivial tangle is a pair (B3, t), where B3 is a 3-ball and t is a union of
two arcs properly embedded in B3 which is parallel to a union of two mutually
disjoint arcs in ∂B3. By a rational tangle, we mean a trivial tangle (B3, t)
which is endowed with a homeomorphism from (∂B3, ∂t) to (S2,P ). Through
the homeomorphism we identify the boundary of a rational tangle with the
Conway sphere. Thus the slope of an essential simple loop in ∂B3− t is defined.
We define the slope of a rational tangle to be the slope of an essential loop on
∂B3 − t which bounds a disk in B3 separating the components of t. We denote
a rational tangle of slope r by (B3, t(r)).

For each r ∈ Q̂, the 2-bridge link K(r) of slope r is the sum of the rational
tangle (B3, t(∞)) of slope∞ and the rational tangle (B3, t(r)) of slope r. Recall
that ∂(B3 − t(∞)) and ∂(B3 − t(r)) are identified with S so that α∞ and αr
bound disks in B3−t(∞) and B3−t(r), respectively. By van-Kampen’s theorem,
the link group G(K(r)) := π1(S3 −K(r)) is obtained as follows:

G(K(r)) ∼= π1(S)/〈〈α∞, αr〉〉 ∼= π1(B3 − t(∞))/〈〈αr〉〉.

Let {a, b} be the standard meridian generator pair of π1(B3 − t(∞), x0) as
described in [8, Section 3]. Then π1(B3− t(∞)) is identified with the free group
F (a, b) with basis {a, b}. For a positive rational number r = q/p, where p and
q are relatively prime positive integers, let ur be the word in {a, b} obtained as
follows. Set εi = (−1)biq/pc, where bxc is the greatest integer not exceeding x.

(1) If p is odd, then

uq/p = aûq/pb
(−1)q û−1

q/p,

where ûq/p = bε1aε2 · · · bεp−2aεp−1 .
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(2) If p is even, then

uq/p = aûq/pa
−1û−1

q/p,

where ûq/p = bε1aε2 · · · aεp−2bεp−1 .

Then ur ∈ F (a, b) ∼= π1(B3 − t(∞)) is represented by the simple loop αr, and
we obtain the following two-generator and one-relator presentation of a 2-bridge
link group:

G(K(r)) ∼= π1(B3 − t(∞))/〈〈αr〉〉 ∼= 〈a, b |ur〉.
This presentation is called the upper presentation of the 2-bridge link group.

2.2. A basic fact concerning the relator ur of the upper presentation

Throughout this paper, a cyclic word is defined to be the set of all cyclic permu-
tations of a cyclically reduced word. By (v) we denote the cyclic word associated
with a cyclically reduced word v. Also the symbol “≡” denotes the letter-by-
letter equality between two words or between two cyclic words. Now we recall
definitions and basic facts from [8] which are needed in the proof of Theorem 1.1
in Section 3.

A word v is called a positive (or negative) word, if all letters in v have positive
(or negative, respectively) exponents.

Definition 2.1. Let v be a reduced word in {a, b}. Decompose v into

v ≡ v1v2 · · · vt,

where, for each i = 1, . . . , t− 1, vi is a positive (or negative) subword, and vi+1

is a negative (or positive, respectively) subword. Then the sequence of positive
integers S(v) := (|v1|, |v2|, . . . , |vt|) is called the S-sequence of v.

A reduced word w in {a, b} is said to be alternating if a±1 and b±1 appear in
w alternately, to be precise, neither a±2 nor b±2 appears in w. Also a cyclically
reduced word w in {a, b} is said to be cyclically alternating, i.e., all the cyclic
permutations of w are alternating. In particular, ur is a cyclically alternating
word in {a, b}.

Lemma 2.2 ([8, Propositions 4.3 and 4.4]). For a rational number r = [m1,m2, . . . ,mk]
with k ≥ 2 and m2 ≥ 2, putting m = m1, we have

S(ur) = (m+ 1, (m2 − 1)〈m〉,m+ 1, . . . ,m+ 1,m2〈m〉),

where the symbol “t〈m〉” represents t successive m’s.

2.3. Small cancellation theory applied to G = 〈a, b |ur0 = ur1 = · · · = 1〉

A subset R of the free group F (a, b) is called symmetrized, if all elements of R
are cyclically reduced and, for each w ∈ R, all cyclic permutations of w and
w−1 also belong to R.
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Definition 2.3. Suppose thatR is a symmetrized subset of F (a, b). A nonempty
word v is called a piece (with respect to R) if there exist distinct w1, w2 ∈ R
such that w1 ≡ vc1 and w2 ≡ vc2. The small cancellation conditions C(p) and
T (q), where p and q are integers such that p ≥ 2 and q ≥ 3, are defined as
follows (see [11]).

(1) Condition C(p): If w ∈ R is a product of n pieces, then n ≥ p.
(2) Condition T (q): For w1, . . . , wn ∈ R with no successive elements wi, wi+1

an inverse pair (i mod n), if n < q, then at least one of the products
w1w2, . . . , wn−1wn, wnw1 is freely reduced without cancellation.

The following proposition enables us to apply small cancellation theory to
the presentation G = 〈a, b |ur0 = ur1 = · · · = 1〉 in Theorem 1.1.

Lemma 2.4 ([9, Lemma 3.8]). Let R be the symmetrized subset of F (a, b)
generated by the set of relators {uri | i ≥ 0} of the presentation G = 〈a, b |ur0 =
ur1 = · · · = 1〉 in Theorem 1.1. Then R satisfies C(4) and T (4).

We may interpret [9, Claim 2 in the proof of Lemma 3.8] as the following
useful format.

Lemma 2.5. Let ri and R be as in Lemma 2.4. If a subword w of the cyclic
word (u±1

ri ) is a product of no less than 2 pieces with respect to R, then S(w)
contains a term 4.

3. Proof of Theorem 1.1

Let s0 := [5, 4, 4] and s1 := [5, 3, 5, 4] be rational numbers. Then both us0
and us1 are cyclically alternating words in {a, b} which begin with a and end
with b−1. Also by Lemma 2.2,

S(us0) = (6, 5, 5, 5, 6, . . . , 6, 5, 5, 5, 5),

S(us1) = (6, 5, 5, 6, . . . , 6, 5, 5, 5).

So we can see that for any product p of elements in {us0 , us1}±1, the cyclic word
(p) has the form

(p) ≡ (w1b
±2w2b

±2 · · ·wnb±2), (†)
where wi is an alternating word in {a, b} such that wi begins and ends with a±1

and such that S(wi) consists of 5 and 6, for every i = 1, 2, . . . , n.
Let H := 〈us0 , us1〉 be a subgroup of G = 〈a, b |ur0 = ur1 = · · · = 1〉. We

will show that G has property F (2) by showing that H is a free group of rank
2 and has the CEP.

Lemma 3.1. The subgroup H = 〈us0 , us1〉 of G = 〈a, b |ur0 = ur1 = · · · = 1〉
is a free group of rank 2.

Proof. Suppose that there exists some nontrivial product p of elements in {us0 , us1}±1

equal to the identity in G. Then there is a reduced van Kampen diagram ∆
over G = 〈a, b |ur0 = ur1 = · · · = 1〉 such that (φ(∂∆)) ≡ (p) (see [11]). Since
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∆ is a [4, 4]-map by Lemma 2.4, we have by the Curvature Formula of Lyndon
and Schupp (see [11, Corollary V.3.4])∑

v∈∂∆

(3− d(v)) ≥ 4.

This implies that there exists a vertex of degree 2 on ∂∆, so that (φ(∂∆))
contains a subword of some (u±1

ri ) which cannot be expressed as a product of
less than 2 pieces with respect to the symmetrized subset R in Lemma 2.4
(see [8, Section 6]). Then, since (φ(∂∆)) ≡ (p), the cyclic word (p) contains
a subword w of the cyclic word (u±1

ri ) such that S(w) contains a term 4 by
Lemma 2.5. But this is obviously a contradiction to (†). �

Now to prove that H has the CEP, let c and d be symbols not in F (a, b).
Put

R = {ur0 , ur1 , ur2 , . . . } ⊆ F (a, b),

W = {c−1us0 , d
−1us1} ⊆ F (a, b, c, d).

Here, F (a, b, c, d) denotes the free group with basis {a, b, c, d}. Then clearly

G = 〈a, b |R〉 ∼= 〈a, b, c, d |W ∪R〉.

Under this isomorphism, the subgroup H = 〈us0 , us1〉 of G maps to 〈c, d〉 which
is a subgroup of 〈a, b, c, d |R ∪W 〉. From now on, we consider the presentation
〈a, b, c, d |W ∪R〉 for G and 〈c, d〉 for H.

Lemma 3.2. Let G and H be as above, and let N be a normal subgroup of H.
Then 〈N〉G ∩H = N .

Proof. Suppose on the contrary that there exists g ∈ (〈N〉G ∩ H) \ N . Let
L be the set of words in {c, d} representing elements of N , and consider the
presentation

〈a, b, c, d |L ∪W ∪R〉.
Let w be a word in {c, d} representing g. Since g ∈ 〈N〉G ∩H, w is equal to the
identity in the group 〈a, b, c, d |L∪W ∪R〉. Then there is a reduced van Kampen
diagram ∆ over 〈a, b, c, d |L∪W ∪R〉 such that (φ(∂∆)) ≡ (w). Assume that g,
w and ∆ are chosen such that the (L;W ;R)-lexicographic area of ∆ is minimal
for all possible choices (i.e., we first minimize the number of faces labelled by
elements of L, then the number of faces labelled by elements of W and then
the number of faces labelled by elements of R), and among these choices, the
number of edges of ∆ is minimal.

The following claim may be immediately adopted from [5, Claim 1 in the
proof of Proposition 2.15], since C(6)-condition was used nowhere in its proof.

Claim 1. ∆ has the following properties:
a) ∆ is a simple disk diagram, and w is cyclically reduced.
b) No L-face intersects ∂∆. Therefore, every edge of ∂∆ is contained in a

W -face.
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c) Every L-face is simply connected, and no two L-faces intersect. Therefore,
every L-face shares all its boundary edges with W -faces. We say it is surrounded
by W -faces.

d) The intersection of two W -faces does not contain a {c, d}-edge.

Let π1, . . . , πt denote the L-faces in ∆. By Claim 1c), each πi is surrounded
by W -faces, say σi,1, . . . , σi,hi . Since every W -face has only one {c, d}-edge, if
i 6= i′ then σi,j 6= σi′,j′ for every j and j′.

Put

S = {us0 , us1} ⊆ F (a, b).

As illustrated in Figure 1, for each i = 1, . . . , t, we may replace a subdiagram
Di = πi ∪ σi,1 ∪ · · · ∪ σi,hi

with D′i = τi,1 ∪ · · · ∪ τi,hi
consisting of S-faces

τi,1, . . . , τi,hi such thatDi andD′i have the same boundary label. Here, an S-face
τi,j is chosen in such a way that if (φ(∂σi,j)) ≡ (c∓1u±1

s0 ) then (φ(∂τi,j)) ≡ (u±1
s0 );

if (φ(∂σi,j)) ≡ (d∓1u±1
s1 ) then (φ(∂τi,j)) ≡ (u±1

s1 ). In this way, we may remove
all L-faces from ∆ to obtain a new diagram ∆′. Then ∆′ is regarded as a
reduced van Kampen diagram over the presentation

〈a, b, c, d |S ∪W ∪R〉

and has the same boundary label as ∆. So (φ(∂∆′)) ≡ (w). Let R be the sym-
metrized subset of the free group F (a, b, c, d) generated by S∪R. As mentioned
in [9, Introduction], a similar statement as Lemma 2.4 holds for r0 = [5, 4, 4]. So
R satisfies small cancellation condition C(4)−T (4) due to Lemma 2.4 together
with the fact that S(uri) consists of 4 and 5, while S(usj ) consists of 5 and 6.

̟ i
,1iσ

,2iσ
,3iσ

,hiσ i

,1i

,2i

,3i

,hi i

τ

τ

τ

τ

Di Di
′

Figure 1. Replacing a subdiagram Di which consists of an
L-face πi and W -faces σi,1, . . . , σi,hi

surrounding πi with D′i
which consists of S faces τi,1, . . . , τi,hi

so that Di and D′i have
the same boundary label.
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Claim 2. ∆′ is a [4, 4]-map (for the definition and convention, see [8, Sec-
tion 6]).

Proof of Claim 2. Clearly, every interior vertex of ∆′ has degree at least 4. Now
we show that every face in ∆′ has at least 4 edges in its boundary, by showing
that a path in the intersection of any two faces in ∆′ is a piece with respect to
R. Clearly a path in the intersection of two R-faces, two S-faces, an R-face and
an S-face, or an R-face and a W -face in ∆′ is a piece with respect to R. By
Claim 1d), the intersection of two W -faces in ∆, so in ∆′, does not contain a
{c, d}-edge, and hence a path in the intersection of two W -faces is a piece with
respect to R.

It remains to consider the intersection of an S-face and a W -face in ∆′. Note
the intersection of an S-face and a W -face in ∆′ corresponds to that of two W -
faces in ∆, since every S-face was obtained by replacing a W -face surrounding
an L-face in ∆. So if a path in the intersection of an S-face and a W -face
in ∆′ is a product of no less than 2 pieces, then a path in the corresponding
intersection of two W -faces in ∆ is a product of no less than 2 pieces. But then
those two W -faces form a reducible pair in ∆, which is a contradiction to the
assumption that ∆ is reduced. Therefore a path in the intersection of an S-face
and a W -face in ∆′ is a piece with respect to R. Since R satisfies C(4), ∆′ is
a [4, 4]-map. �

By Claim 2, we obtain that by the Curvature Formula of Lyndon and Schupp,∑
v∈∂∆′

(3− d(v)) ≥ 4,

so that there exists a vertex of degree 2 on ∂∆′. This together with Claim 1b)
implies that (φ(∂∆′)) contains a subword of the cyclic word (c∓1u±1

s0 ) or the

cyclic word (d∓1u±1
s1 ) which cannot be expressed as a product of less than 2

pieces. Then, since (φ(∂∆′)) ≡ (w), the cyclic word (w) contains a nontrivial
subword of (u±1

s0 ) or (u±1
s1 ). But since u±1

s0 and u±1
s1 are reduced words in {a, b}

while w is a cyclically reduced word in {c, d} by Claim 1a), this is obviously a
contradiction, completing the proof of Lemma 3.2. �

By Lemmas 3.1 and 3.2, G = 〈a, b |ur0 = ur1 = · · · = 1〉 has property F (2),
which completes the proof of Theorem 1.1 due to Proposition 1.3. �
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