East Asian Math. J.
Vol. 34 (2018), No. 5, pp. 587-595
http://dx.doi.org/10.7858/eamj.2018.038

NON-HOPFIAN SQ-UNIVERSAL GROUPS

Donghi Lee

Abstract

In [9], Lee and Sakuma constructed 2-generator non-Hopfian groups each of which has a specific presentation $\langle a, b \mid R\rangle$ satisfying small cancellation conditions $C(4)$ and $T(4)$. In this paper, we prove the SQuniversality of those non-Hopfian groups.

1. Introduction

Recall that a group G is called $S Q$-universal if every countable group can be embedded in a quotient of G. Being SQ-universal is a group-theoretic property that is traditionally thought as measuring "largeness" of a group, since any SQ-universal group contains an infinitely generated free subgroup and has uncountably many pairwise non-isomorphic quotients.

Examples of SQ-universal groups include the free group of rank 2 [6], various HNN-extensions and amalgamated free products [3, 10, 13], groups of deficiency 2 [2], non-elementary hyperbolic groups [12], non-elementary relatively hyperbolic groups [1], etc. For finitely presented small cancellation groups, most $C(3)-T(6)$ groups [7], and all $C(p)-T(q)$ groups [4] with (p, q) being positive integers such that $1 / p+1 / q<1 / 2$ are SQ-universal. On the other hand, for infinitely presented small cancellation groups, Gruber [5] proved the SQuniversality of $C(6)$ groups.

Motivated by Gruber's direct proof of the SQ-universality of $C(6)$ groups, we prove the SQ-universality of the non-Hopfian groups constructed in [9]. Recall that the simplest non-Hopfian group G in [9] has the presentation

$$
G=\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle
$$

which satisfies small cancellation conditions $C(4)-T(4)$. Here, $u_{r_{i}}$ is the single relator of the upper presentation $\left\langle a, b \mid u_{r_{i}}\right\rangle$ of the 2-bridge link group of slope r_{i}, where $r_{0}=[4,3,3]$ and $r_{i}=[4,2,(i-1)\langle 3\rangle, 4,3]$ in continued fraction expansion for every integer $i \geq 1$. Recall that for $\left(m_{1}, \ldots, m_{k}\right) \in\left(\mathbb{Z}_{+}\right)^{k}$,

[^0]$$
\left[m_{1}, m_{2}, \ldots, m_{k}\right]:=\frac{1}{m_{1}+\frac{1}{m_{2}+\ddots \cdot+\frac{1}{m_{k}}}}
$$

Recall also that the symbol " $(i-1)\langle 3\rangle$ " represents $i-1$ successive 3's if $i-$ $1 \geq 1$, whereas " $0\langle 3\rangle$ " means that 3 does not occur in that place, so that $r_{1}=[4,2,0\langle 3\rangle, 4,3]=[4,2,4,3]$.

The following is the main result of this paper.
Theorem 1.1. Let $r_{0}=[4,3,3]$, and let $r_{i}=[4,2,(i-1)\langle 3\rangle, 4,3]$ for every integer $i \geq 1$. Then the group $G=\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle$ is $S Q$-universal.

In the proof of Theorem 1.1, the following definition and result from [12] play an important role.

Definition 1.2 ([12]). Let G be a group and H a subgroup of G. Then H has the congruence extension property $(C E P)$ if for every normal subgroup N of H (i.e., N is normal in H), we have $\langle N\rangle^{G} \cap H=N$, where $\langle N\rangle^{G}$ denotes the normal closure of N in G. The group G has property $F(2)$ if there exists a subgroup H of G that is a free group of rank 2 and that has the CEP.

Proposition 1.3 ([12]). If a group G has property $F(2)$, then G is $S Q$-universal.
In the viewpoint of Proposition 1.3, we will show that the group $G=$ $\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle$ has property $F(2)$ to prove Theorem 1.1. To be precise, putting $s_{0}=[5,4,4]$ and $s_{1}=[5,3,5,4]$, we will show that the subgroup $H=\left\langle u_{s_{0}}, u_{s_{1}}\right\rangle$ of G is a free group of rank 2 and has the CEP. By looking at the proof of Theorem 1.1 in Section 3, it is not hard to see that a similar result holds not only for $r_{0}=[4,3,3]$ but also for $r_{0}=[m+1, m, m]$ with m being any integer greater than 3 . Thus we only state its general form without a detailed proof.

Theorem 1.4. Suppose that m is an integer with $m \geq 3$. Let $r_{0}=[m+1, m, m]$, and let $r_{i}=[m+1, m-1,(i-1)\langle m\rangle, m+1, m]$ for every integer $i \geq 1$. Then the group $G=\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle$ is $S Q$-universal.

The present paper is organized as follows. In Section 2, we recall the upper presentation of a 2-bridge link group, and a basic fact established in [8] concerning the single relator u_{r} of the upper presentation. We also recall key facts from [9] obtained by applying small cancellation theory to $G=\langle a, b| u_{r_{0}}=u_{r_{1}}=$ $\cdots=1\rangle$. Section 3 is devoted to the proof of Theorem 1.1.

2. Preliminaries

2.1. Upper presentations of 2-bridge link groups

Consider the discrete group, H, of isometries of the Euclidean plane \mathbb{R}^{2} generated by the π-rotations around the points in the lattice \mathbb{Z}^{2}. Set $\left(\boldsymbol{S}^{2}, \boldsymbol{P}\right):=$ $\left(\mathbb{R}^{2}, \mathbb{Z}^{2}\right) / H$ and call it the Conway sphere. Then \boldsymbol{S}^{2} is homeomorphic to the 2 -sphere, and \boldsymbol{P} consists of four points in \boldsymbol{S}^{2}. We also call \boldsymbol{S}^{2} the Conway sphere. Let $\boldsymbol{S}:=\boldsymbol{S}^{2}-\boldsymbol{P}$ be the complementary 4 -times punctured sphere. For each $r \in \widehat{\mathbb{Q}}:=\mathbb{Q} \cup\{\infty\}$, let α_{r} be the unoriented simple loop in \boldsymbol{S} obtained as the projection of any straight line in $\mathbb{R}^{2}-\mathbb{Z}^{2}$ of slope r. Then α_{r} is essential in \boldsymbol{S}, i.e., it does not bound a disk nor a once-punctured disk in \boldsymbol{S}. Conversely, any essential simple loop in \boldsymbol{S} is isotopic to α_{r} for a unique $r \in \widehat{\mathbb{Q}}$. Then r is called the slope of the simple loop. Similarly, any simple $\operatorname{arc} \delta$ in \boldsymbol{S}^{2} joining two different points in \boldsymbol{P} such that $\delta \cap \boldsymbol{P}=\partial \delta$ is isotopic to the image of a line in \mathbb{R}^{2} of some slope $r \in \widehat{\mathbb{Q}}$ which intersects \mathbb{Z}^{2}. We call r the slope of δ. Thus, for every slope $r \in \widehat{\mathbb{Q}}$, there exist two arcs and one loop of slope r in $\left(\boldsymbol{S}^{2}, \boldsymbol{P}\right)$ (all unoriented).

A trivial tangle is a pair $\left(B^{3}, t\right)$, where B^{3} is a 3 -ball and t is a union of two arcs properly embedded in B^{3} which is parallel to a union of two mutually disjoint arcs in ∂B^{3}. By a rational tangle, we mean a trivial tangle $\left(B^{3}, t\right)$ which is endowed with a homeomorphism from $\left(\partial B^{3}, \partial t\right)$ to $\left(\boldsymbol{S}^{2}, \boldsymbol{P}\right)$. Through the homeomorphism we identify the boundary of a rational tangle with the Conway sphere. Thus the slope of an essential simple loop in $\partial B^{3}-t$ is defined. We define the slope of a rational tangle to be the slope of an essential loop on $\partial B^{3}-t$ which bounds a disk in B^{3} separating the components of t. We denote a rational tangle of slope r by $\left(B^{3}, t(r)\right)$.

For each $r \in \widehat{\mathbb{Q}}$, the 2-bridge link $K(r)$ of slope r is the sum of the rational tangle $\left(B^{3}, t(\infty)\right)$ of slope ∞ and the rational tangle $\left(B^{3}, t(r)\right)$ of slope r. Recall that $\partial\left(B^{3}-t(\infty)\right)$ and $\partial\left(B^{3}-t(r)\right)$ are identified with \boldsymbol{S} so that α_{∞} and α_{r} bound disks in $B^{3}-t(\infty)$ and $B^{3}-t(r)$, respectively. By van-Kampen's theorem, the link group $G(K(r)):=\pi_{1}\left(S^{3}-K(r)\right)$ is obtained as follows:

$$
G(K(r)) \cong \pi_{1}(\boldsymbol{S}) /\left\langle\left\langle\alpha_{\infty}, \alpha_{r}\right\rangle\right\rangle \cong \pi_{1}\left(B^{3}-t(\infty)\right) /\left\langle\left\langle\alpha_{r}\right\rangle\right\rangle .
$$

Let $\{a, b\}$ be the standard meridian generator pair of $\pi_{1}\left(B^{3}-t(\infty), x_{0}\right)$ as described in $\left[8\right.$, Section 3]. Then $\pi_{1}\left(B^{3}-t(\infty)\right)$ is identified with the free group $F(a, b)$ with basis $\{a, b\}$. For a positive rational number $r=q / p$, where p and q are relatively prime positive integers, let u_{r} be the word in $\{a, b\}$ obtained as follows. Set $\epsilon_{i}=(-1)^{\lfloor i q / p\rfloor}$, where $\lfloor x\rfloor$ is the greatest integer not exceeding x.
(1) If p is odd, then

$$
u_{q / p}=a \hat{u}_{q / p} b^{(-1)^{q}} \hat{u}_{q / p}^{-1},
$$

where $\hat{u}_{q / p}=b^{\epsilon_{1}} a^{\epsilon_{2}} \cdots b^{\epsilon_{p-2}} a^{\epsilon_{p-1}}$.
(2) If p is even, then

$$
u_{q / p}=a \hat{u}_{q / p} a^{-1} \hat{u}_{q / p}^{-1},
$$

where $\hat{u}_{q / p}=b^{\epsilon_{1}} a^{\epsilon_{2}} \cdots a^{\epsilon_{p-2}} b^{\epsilon_{p-1}}$.
Then $u_{r} \in F(a, b) \cong \pi_{1}\left(B^{3}-t(\infty)\right)$ is represented by the simple loop α_{r}, and we obtain the following two-generator and one-relator presentation of a 2 -bridge link group:

$$
G(K(r)) \cong \pi_{1}\left(B^{3}-t(\infty)\right) /\left\langle\left\langle\alpha_{r}\right\rangle\right\rangle \cong\left\langle a, b \mid u_{r}\right\rangle .
$$

This presentation is called the upper presentation of the 2 -bridge link group.
2.2. A basic fact concerning the relator u_{r} of the upper presentation

Throughout this paper, a cyclic word is defined to be the set of all cyclic permutations of a cyclically reduced word. By (v) we denote the cyclic word associated with a cyclically reduced word v. Also the symbol " \equiv " denotes the letter-byletter equality between two words or between two cyclic words. Now we recall definitions and basic facts from [8] which are needed in the proof of Theorem 1.1 in Section 3.

A word v is called a positive (or negative) word, if all letters in v have positive (or negative, respectively) exponents.

Definition 2.1. Let v be a reduced word in $\{a, b\}$. Decompose v into

$$
v \equiv v_{1} v_{2} \cdots v_{t}
$$

where, for each $i=1, \ldots, t-1, v_{i}$ is a positive (or negative) subword, and v_{i+1} is a negative (or positive, respectively) subword. Then the sequence of positive integers $S(v):=\left(\left|v_{1}\right|,\left|v_{2}\right|, \ldots,\left|v_{t}\right|\right)$ is called the S-sequence of v.

A reduced word w in $\{a, b\}$ is said to be alternating if $a^{ \pm 1}$ and $b^{ \pm 1}$ appear in w alternately, to be precise, neither $a^{ \pm 2}$ nor $b^{ \pm 2}$ appears in w. Also a cyclically reduced word w in $\{a, b\}$ is said to be cyclically alternating, i.e., all the cyclic permutations of w are alternating. In particular, u_{r} is a cyclically alternating word in $\{a, b\}$.

Lemma 2.2 ([8, Propositions 4.3 and 4.4]). For a rational number $r=\left[m_{1}, m_{2}, \ldots, m_{k}\right]$ with $k \geq 2$ and $m_{2} \geq 2$, putting $m=m_{1}$, we have

$$
S\left(u_{r}\right)=\left(m+1,\left(m_{2}-1\right)\langle m\rangle, m+1, \ldots, m+1, m_{2}\langle m\rangle\right),
$$

where the symbol " $\langle\langle m\rangle$ " represents t successive m 's.
2.3. Small cancellation theory applied to $G=\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle$

A subset R of the free group $F(a, b)$ is called symmetrized, if all elements of R are cyclically reduced and, for each $w \in R$, all cyclic permutations of w and w^{-1} also belong to R.

Definition 2.3. Suppose that R is a symmetrized subset of $F(a, b)$. A nonempty word v is called a piece (with respect to R) if there exist distinct $w_{1}, w_{2} \in R$ such that $w_{1} \equiv v c_{1}$ and $w_{2} \equiv v c_{2}$. The small cancellation conditions $C(p)$ and $T(q)$, where p and q are integers such that $p \geq 2$ and $q \geq 3$, are defined as follows (see [11]).
(1) Condition $C(p)$: If $w \in R$ is a product of n pieces, then $n \geq p$.
(2) Condition $T(q)$: For $w_{1}, \ldots, w_{n} \in R$ with no successive elements w_{i}, w_{i+1} an inverse pair $(i \bmod n)$, if $n<q$, then at least one of the products $w_{1} w_{2}, \ldots, w_{n-1} w_{n}, w_{n} w_{1}$ is freely reduced without cancellation.

The following proposition enables us to apply small cancellation theory to the presentation $G=\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle$ in Theorem 1.1.

Lemma 2.4 ([9, Lemma 3.8]). Let R be the symmetrized subset of $F(a, b)$ generated by the set of relators $\left\{u_{r_{i}} \mid i \geq 0\right\}$ of the presentation $G=\langle a, b| u_{r_{0}}=$ $\left.u_{r_{1}}=\cdots=1\right\rangle$ in Theorem 1.1. Then R satisfies $C(4)$ and $T(4)$.

We may interpret [9, Claim 2 in the proof of Lemma 3.8] as the following useful format.

Lemma 2.5. Let r_{i} and R be as in Lemma 2.4. If a subword w of the cyclic word $\left(u_{r_{i}}^{ \pm 1}\right)$ is a product of no less than 2 pieces with respect to R, then $S(w)$ contains a term 4.

3. Proof of Theorem 1.1

Let $s_{0}:=[5,4,4]$ and $s_{1}:=[5,3,5,4]$ be rational numbers. Then both $u_{s_{0}}$ and $u_{s_{1}}$ are cyclically alternating words in $\{a, b\}$ which begin with a and end with b^{-1}. Also by Lemma 2.2,

$$
\begin{aligned}
& S\left(u_{s_{0}}\right)=(6,5,5,5,6, \ldots, 6,5,5,5,5), \\
& S\left(u_{s_{1}}\right)=(6,5,5,6, \ldots, 6,5,5,5) .
\end{aligned}
$$

So we can see that for any product p of elements in $\left\{u_{s_{0}}, u_{s_{1}}\right\}^{ \pm 1}$, the cyclic word (p) has the form

$$
(p) \equiv\left(w_{1} b^{ \pm 2} w_{2} b^{ \pm 2} \cdots w_{n} b^{ \pm 2}\right)
$$

where w_{i} is an alternating word in $\{a, b\}$ such that w_{i} begins and ends with $a^{ \pm 1}$ and such that $S\left(w_{i}\right)$ consists of 5 and 6 , for every $i=1,2, \ldots, n$.

Let $H:=\left\langle u_{s_{0}}, u_{s_{1}}\right\rangle$ be a subgroup of $G=\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle$. We will show that G has property $F(2)$ by showing that H is a free group of rank 2 and has the CEP.

Lemma 3.1. The subgroup $H=\left\langle u_{s_{0}}, u_{s_{1}}\right\rangle$ of $G=\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle$ is a free group of rank 2 .
Proof. Suppose that there exists some nontrivial product p of elements in $\left\{u_{s_{0}}, u_{s_{1}}\right\}^{ \pm 1}$ equal to the identity in G. Then there is a reduced van Kampen diagram Δ over $G=\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle$ such that $(\phi(\partial \Delta)) \equiv(p)$ (see [11]). Since
Δ is a $[4,4]$-map by Lemma 2.4, we have by the Curvature Formula of Lyndon and Schupp (see [11, Corollary V.3.4])

$$
\sum_{v \in \partial \Delta}(3-d(v)) \geq 4
$$

This implies that there exists a vertex of degree 2 on $\partial \Delta$, so that $(\phi(\partial \Delta))$ contains a subword of some $\left(u_{r_{i}}^{ \pm 1}\right)$ which cannot be expressed as a product of less than 2 pieces with respect to the symmetrized subset R in Lemma 2.4 (see $[8$, Section 6]). Then, since $(\phi(\partial \Delta)) \equiv(p)$, the cyclic word (p) contains a subword w of the cyclic word ($u_{r_{i}}^{ \pm 1}$) such that $S(w)$ contains a term 4 by Lemma 2.5. But this is obviously a contradiction to (\dagger).

Now to prove that H has the CEP, let c and d be symbols not in $F(a, b)$. Put

$$
\begin{aligned}
R & =\left\{u_{r_{0}}, u_{r_{1}}, u_{r_{2}}, \ldots\right\} \subseteq F(a, b), \\
W & =\left\{c^{-1} u_{s_{0}}, d^{-1} u_{s_{1}}\right\} \subseteq F(a, b, c, d) .
\end{aligned}
$$

Here, $F(a, b, c, d)$ denotes the free group with basis $\{a, b, c, d\}$. Then clearly

$$
G=\langle a, b \mid R\rangle \cong\langle a, b, c, d \mid W \cup R\rangle .
$$

Under this isomorphism, the subgroup $H=\left\langle u_{s_{0}}, u_{s_{1}}\right\rangle$ of G maps to $\langle c, d\rangle$ which is a subgroup of $\langle a, b, c, d \mid R \cup W\rangle$. From now on, we consider the presentation $\langle a, b, c, d \mid W \cup R\rangle$ for G and $\langle c, d\rangle$ for H.

Lemma 3.2. Let G and H be as above, and let N be a normal subgroup of H. Then $\langle N\rangle^{G} \cap H=N$.
Proof. Suppose on the contrary that there exists $g \in\left(\langle N\rangle^{G} \cap H\right) \backslash N$. Let L be the set of words in $\{c, d\}$ representing elements of N, and consider the presentation

$$
\langle a, b, c, d \mid L \cup W \cup R\rangle .
$$

Let w be a word in $\{c, d\}$ representing g. Since $g \in\langle N\rangle^{G} \cap H, w$ is equal to the identity in the group $\langle a, b, c, d \mid L \cup W \cup R\rangle$. Then there is a reduced van Kampen diagram Δ over $\langle a, b, c, d \mid L \cup W \cup R\rangle$ such that $(\phi(\partial \Delta)) \equiv(w)$. Assume that g, w and Δ are chosen such that the $(L ; W ; R)$-lexicographic area of Δ is minimal for all possible choices (i.e., we first minimize the number of faces labelled by elements of L, then the number of faces labelled by elements of W and then the number of faces labelled by elements of R), and among these choices, the number of edges of Δ is minimal.

The following claim may be immediately adopted from [5, Claim 1 in the proof of Proposition 2.15], since $C(6)$-condition was used nowhere in its proof.

Claim 1. Δ has the following properties:
a) Δ is a simple disk diagram, and w is cyclically reduced.
b) No L-face intersects $\partial \Delta$. Therefore, every edge of $\partial \Delta$ is contained in a W-face.
c) Every L-face is simply connected, and no two L-faces intersect. Therefore, every L-face shares all its boundary edges with W-faces. We say it is surrounded by W-faces.
d) The intersection of two W-faces does not contain a $\{c, d\}$-edge.

Let π_{1}, \ldots, π_{t} denote the L-faces in Δ. By Claim 1c), each π_{i} is surrounded by W-faces, say $\sigma_{i, 1}, \ldots, \sigma_{i, h_{i}}$. Since every W-face has only one $\{c, d\}$-edge, if $i \neq i^{\prime}$ then $\sigma_{i, j} \neq \sigma_{i^{\prime}, j^{\prime}}$ for every j and j^{\prime}.

Put

$$
S=\left\{u_{s_{0}}, u_{s_{1}}\right\} \subseteq F(a, b) .
$$

As illustrated in Figure 1, for each $i=1, \ldots, t$, we may replace a subdiagram $D_{i}=\pi_{i} \cup \sigma_{i, 1} \cup \cdots \cup \sigma_{i, h_{i}}$ with $D_{i}^{\prime}=\tau_{i, 1} \cup \cdots \cup \tau_{i, h_{i}}$ consisting of S-faces $\tau_{i, 1}, \ldots, \tau_{i, h_{i}}$ such that D_{i} and D_{i}^{\prime} have the same boundary label. Here, an S-face $\tau_{i, j}$ is chosen in such a way that if $\left(\phi\left(\partial \sigma_{i, j}\right)\right) \equiv\left(c^{\mp 1} u_{s_{0}}^{ \pm 1}\right)$ then $\left(\phi\left(\partial \tau_{i, j}\right)\right) \equiv\left(u_{s_{0}}^{ \pm 1}\right)$; if $\left(\phi\left(\partial \sigma_{i, j}\right)\right) \equiv\left(d^{\mp 1} u_{s_{1}}^{ \pm 1}\right)$ then $\left(\phi\left(\partial \tau_{i, j}\right)\right) \equiv\left(u_{s_{1}}^{ \pm 1}\right)$. In this way, we may remove all L-faces from Δ to obtain a new diagram Δ^{\prime}. Then Δ^{\prime} is regarded as a reduced van Kampen diagram over the presentation

$$
\langle a, b, c, d \mid S \cup W \cup R\rangle
$$

and has the same boundary label as Δ. So $\left(\phi\left(\partial \Delta^{\prime}\right)\right) \equiv(w)$. Let \mathcal{R} be the symmetrized subset of the free group $F(a, b, c, d)$ generated by $S \cup R$. As mentioned in [9, Introduction], a similar statement as Lemma 2.4 holds for $r_{0}=[5,4,4]$. So \mathcal{R} satisfies small cancellation condition $C(4)-T(4)$ due to Lemma 2.4 together with the fact that $S\left(u_{r_{i}}\right)$ consists of 4 and 5 , while $S\left(u_{s_{j}}\right)$ consists of 5 and 6 .

Figure 1. Replacing a subdiagram D_{i} which consists of an L-face π_{i} and W-faces $\sigma_{i, 1}, \ldots, \sigma_{i, h_{i}}$ surrounding π_{i} with D_{i}^{\prime} which consists of S faces $\tau_{i, 1}, \ldots, \tau_{i, h_{i}}$ so that D_{i} and D_{i}^{\prime} have the same boundary label.

Claim 2. Δ^{\prime} is a $[4,4]$-map (for the definition and convention, see $[8$, Section 6]).

Proof of Claim 2. Clearly, every interior vertex of Δ^{\prime} has degree at least 4 . Now we show that every face in Δ^{\prime} has at least 4 edges in its boundary, by showing that a path in the intersection of any two faces in Δ^{\prime} is a piece with respect to \mathcal{R}. Clearly a path in the intersection of two R-faces, two S-faces, an R-face and an S-face, or an R-face and a W-face in Δ^{\prime} is a piece with respect to \mathcal{R}. By Claim 1d), the intersection of two W-faces in Δ, so in Δ^{\prime}, does not contain a $\{c, d\}$-edge, and hence a path in the intersection of two W-faces is a piece with respect to \mathcal{R}.

It remains to consider the intersection of an S-face and a W-face in Δ^{\prime}. Note the intersection of an S-face and a W-face in Δ^{\prime} corresponds to that of two W faces in Δ, since every S-face was obtained by replacing a W-face surrounding an L-face in Δ. So if a path in the intersection of an S-face and a W-face in Δ^{\prime} is a product of no less than 2 pieces, then a path in the corresponding intersection of two W-faces in Δ is a product of no less than 2 pieces. But then those two W-faces form a reducible pair in Δ, which is a contradiction to the assumption that Δ is reduced. Therefore a path in the intersection of an S-face and a W-face in Δ^{\prime} is a piece with respect to \mathcal{R}. Since \mathcal{R} satisfies $C(4), \Delta^{\prime}$ is a [4, 4]-map.

By Claim 2, we obtain that by the Curvature Formula of Lyndon and Schupp,

$$
\sum_{v \in \partial \Delta^{\prime}}(3-d(v)) \geq 4
$$

so that there exists a vertex of degree 2 on $\partial \Delta^{\prime}$. This together with Claim 1b) implies that $\left(\phi\left(\partial \Delta^{\prime}\right)\right)$ contains a subword of the cyclic word ($c^{\mp 1} u_{s_{0}}^{ \pm 1}$) or the cyclic word $\left(d^{\mp 1} u_{s_{1}}^{ \pm 1}\right)$ which cannot be expressed as a product of less than 2 pieces. Then, since $\left(\phi\left(\partial \Delta^{\prime}\right)\right) \equiv(w)$, the cyclic word (w) contains a nontrivial subword of $\left(u_{s_{0}}^{ \pm 1}\right)$ or $\left(u_{s_{1}}^{ \pm 1}\right)$. But since $u_{s_{0}}^{ \pm 1}$ and $u_{s_{1}}^{ \pm 1}$ are reduced words in $\{a, b\}$ while w is a cyclically reduced word in $\{c, d\}$ by Claim 1a), this is obviously a contradiction, completing the proof of Lemma 3.2.

By Lemmas 3.1 and 3.2, $G=\left\langle a, b \mid u_{r_{0}}=u_{r_{1}}=\cdots=1\right\rangle$ has property $F(2)$, which completes the proof of Theorem 1.1 due to Proposition 1.3.

Acknowledgement

The author would like to thank the anonymous referee for very careful reading and valuable remarks.

References

[1] G. Arzhantseva, A. Minasyan and D. Osin, The SQ-universality and residual properties of relatively hyperbolic groups, J. Algebra 315 (2007), 165-177.
[2] B. Baumslag and S. J. Pride, Groups with two more generators than relators, J. London Math. Soc. 17 (3) (1978), 425-426.
[3] B. Fine and M. Tretkoff, On the $S Q$-universality of $H N N$ groups, Proc. Amer. Math. Soc. 73 (3) (1979), 283-290.
[4] S. M. Gersten and H. Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990), 305-334.
[5] D. Gruber, Infinitely presented $C(6)$-groups are SQ-universal, J. London Math. Soc. 92 (2015), 178-201.
[6] G. Higman, B. : Neumann and H. Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247-254.
[7] J. Howie, On the SQ-universality of T(6)-groups, Forum Math. 1 (3) (1989), 251-272.
[8] D. Lee and M. Sakuma, Epimorphisms between 2-bridge link groups: homotopically trivial simple loops on 2-bridge spheres, Proc. London Math. Soc. 104 (2012), 359-386.
[9] D. Lee and M. Sakuma, A family of two generator non-Hopfian groups, Int. J. Algebra Comput. 27 (2017), 655-675.
[10] K. I. Lossov, SQ-universality of free products with amalgamated finite subgroups, Sibirsk. Mat. Zh. 27 (6) (1986), 128-139, 225 (in Russian).
[11] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977.
[12] A. Yu. Olshanski, The SQ-universality of hyperbolic groups, Sbornik: Mathematics 186 (8) (1995), 1199-1211.
[13] G. S. Sacerdote and P. E. Schupp, SQ-universality in HNN groups and one relator groups, J. London Math. Soc. 7 (2) (1974), 733-740.

Donghi Le

Department of Mathematics
Pusan National University
San-30 Jangjeon-Dong, Geumjung-Gu, Pusan, 609-735, Korea
E-mail address: donghi@pusan.ac.kr

[^0]: Received May 16, 2018; Accepted July 3, 2018.
 2010 Mathematics Subject Classification. Primary 20 F06.
 Key words and phrases. non-Hopfian group, small cancellation condition, SQ-universality. This work was supported by a 2-Year Research Grant of Pusan National University.

