DOI QR코드

DOI QR Code

Role of Actin Filament on Synaptic Vesicle Pooling in Cultured Hippocampal Neuron

  • Lee, Se Jeong (Department of Anatomy, Korea University College of Medicine) ;
  • Kim, Hyun-Wook (Department of Anatomy, Korea University College of Medicine) ;
  • Na, Ji Eun (Department of Anatomy, Korea University College of Medicine) ;
  • Kim, DaSom (Department of Anatomy, Korea University College of Medicine) ;
  • Kim, Dai Hyun (Department of Anatomy, Korea University College of Medicine) ;
  • Ryu, Jae Ryun (Department of Anatomy, Korea University College of Medicine) ;
  • Sun, Woong (Department of Anatomy, Korea University College of Medicine) ;
  • Rhyu, Im Joo (Department of Anatomy, Korea University College of Medicine)
  • Received : 2018.09.22
  • Accepted : 2018.10.02
  • Published : 2018.09.30

Abstract

The synaptic vesicle is a specialized structure in presynaptic terminals that stores various neurotransmitters. The actin filament has been proposed for playing an important role in mobilizing synaptic vesicles. To understand the role of actin filament on synaptic vesicle pooling, we characterized synaptic vesicles and actin filament after treatment of brain-derived neurotrophic factor (BDNF) or Latrunculin A on primary cultured neuron from rat embryo hippocampus. Western blots revealed that BDNF treatment increased the expression of synapsin I protein, but Latrunculin A treatment decreased the synapsin I protein expression. The increased expression of synapsin I after BDNF disappeared by the treatment of Latrunculin A. Three-dimensional (3D) tomography of synapse showed that more synaptic vesicles localized near the active zone and total number of synaptic vesicles increased after treatment of BDNF. But the number of synaptic vesicle was 2.5-fold reduced in presynaptic terminals and the loss of filamentous network was observed after Latrunculin A application. The treatment of Latruculin A after preincubation of BDNF group showed that synaptic vesicle number was similar to that of control group, but filamentous structures were not restored. These data suggest that the actin filament plays a significant role in synaptic vesicles pooling in presynaptic terminals.

Keywords

References

  1. Bamji S X, Rico B, Kimes N, and Reichardt L F (2006) BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-beta-catenin interactions. J. Cell Biol. 174, 289-299. https://doi.org/10.1083/jcb.200601087
  2. Benfenati F, Valtorta F, Chieregatti E, and Greengard P (1992) Interaction of free and synaptic vesicle-bound synapsin I with F-actin. Neuron 8, 377-386. https://doi.org/10.1016/0896-6273(92)90303-U
  3. Bloom O, Evergren E, Tomilin N, Kjaerulff O, Low P, Brodin L, Pieribone VA, Greengard P, and Shupliakov O (2003) Colocalization of synapsin and actin during synaptic vesicle recycling. J. Cell Biol. 161, 737-747. https://doi.org/10.1083/jcb.200212140
  4. Capani F, Martone M E, Deerinck T J, and Ellisman M H (2001) Selective localization of high concentrations of F-actin in subpopulations of dendritic spines in rat central nervous system: a three-dimensional electron microscopic study. J. Comp. Neurol. 435, 156-170. https://doi.org/10.1002/cne.1199
  5. Cingolani L A and Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344-356. https://doi.org/10.1038/nrn2373
  6. Cole A A, Chen X, and Reese T S (2016) A network of three types of fila- ments organizes synaptic vesicles for storage, mobilization, and docking. J. Neurosci. 36, 3222-3230. https://doi.org/10.1523/JNEUROSCI.2939-15.2016
  7. Cole J C, Villa B R, and Wilkinson R S (2000) Disruption of actin impedes transmitter release in snake motor terminals. J. Physiol. 525, 579- 586. https://doi.org/10.1111/j.1469-7793.2000.t01-2-00579.x
  8. Cottrell J R, Levenson J M, Kim S H, Gibson H E, Richardson K A, Sivula M, Li B, Ashford C J, Heindl K A, Babcock R J, Rose D M, Hempel C M, Wiig K A, Laeng P, Levin M E, Ryan T A, and Gerber D J (2013) Work- ing memory impairment in calcineurin knock-out mice is associated with alterations in synaptic vesicle cycling and disruption of high-fre- quency synaptic and network activity in prefrontal cortex. J. Neurosci. 33, 10938-10949. https://doi.org/10.1523/JNEUROSCI.5362-12.2013
  9. Coue M, Brenner SL, Spector I, and Korn ED (1987) Inhibition of actin polymerization by latrunculin A. FEBS Lett. 213, 316-318. https://doi.org/10.1016/0014-5793(87)81513-2
  10. Dillon C and Goda Y (2005) The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28, 25-55. https://doi.org/10.1146/annurev.neuro.28.061604.135757
  11. Doussau F and Augustine G J (2000) The actin cytoskeleton and neu- rotransmitter release: an overview. Biochimie 82, 353-363. https://doi.org/10.1016/S0300-9084(00)00217-0
  12. Greengard P, Valtorta F, Czernik A J, and Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259, 780-785. https://doi.org/10.1126/science.8430330
  13. Harlow M L, Ress D, Stoschek A, Marshall R M, and McMahan U J (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409, 479-484. https://doi.org/10.1038/35054000
  14. Haucke V, Neher E, and Sigrist S J (2011) Protein scaffolds in the coupling of synaptic exocytosis and endocytoisis. Nat. Rev. Neurosci. 12, 127-138. https://doi.org/10.1038/nrn2948
  15. Jovanovic J N, Czernik A J, Fienberg A A, Greengard P, and Sihra T S (2000) Synapsins as mediators of BDNF-enhanced neurotransmitter release. Nat. Neurosci. 3, 323-329. https://doi.org/10.1038/73888
  16. Kim H W, Kim D, and Rhyu I J (2014) Electron tomography and synapse study. Appl. Microsc. 44, 83-87. https://doi.org/10.9729/AM.2014.44.3.83
  17. Kim H W, Oh S H, Kim N, Nakazawa E, and Rhyu I J (2013) Rapid method for electron tomographic reconstruction and three-dimensional modeling of the murine synapse using an automated fiducial marker-free system. Microsc. Microanal. 19, 182-187.
  18. Michel K, Muller J A, Oprisoreanu A M, and Schoch S (2015) The presynaptic active zone: a dynamic scaffold that regulates synaptic efficacy. Exp. Cell Res. 335, 157-164. https://doi.org/10.1016/j.yexcr.2015.02.011
  19. Morales M, Colicos M A, and Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27, 539-550. https://doi.org/10.1016/S0896-6273(00)00064-7
  20. Nelson J C, Stavoe A K, and Colón-Ramos D A (2013) The actin cytoskeleton in presynaptic assembly. Cell Adh. Migr. 7, 379-387. https://doi.org/10.4161/cam.24803
  21. Pechstein A and Shupliakov O (2010) Taking a back seat: synaptic vesicle clustering in presynaptic terminals. Front. Synaptic Neurosci. 15, 143.
  22. Richards D A, Rizzoli S O, and Betz W J (2004) Effects of wortmannin and latrunculin A on slow endocytosis at the frog neuromuscular junction. J. Physiol. 557, 77-91. https://doi.org/10.1113/jphysiol.2004.062158
  23. Rizzoli S O and Betz W J (2005) Synaptic vesicle pools. Nat. Rev. Neurosci. 6, 57-69. https://doi.org/10.1038/nrn1583
  24. Ryu J R, Jang M J, Jo Y, Joo S, Lee D H, Lee B Y, Nam Y, and Sun W (2016) Synaptic compartmentalization by micropatterned masking of a surface adhesive cue in cultured neurons. Biomaterials 92, 46-56. https://doi.org/10.1016/j.biomaterials.2016.03.027
  25. Sanchez A L, Matthews B J, Meynard M M, Hu B, Javed S, and Cohen Cory S (2006) BDNF increases synapse density in dendrites of developing tectal neurons in vivo. Development 133, 2477-2486. https://doi.org/10.1242/dev.02409
  26. Shinoda Y, Ahmed S, Ramachandran B, Bharat V, Brockelt D, Altas B, and Dean C (2014) BDNF enhances spontaneous and activity-dependent neurotransmitter release at excitatory terminals but not at inhibitory terminals in hippocampal neurons. Front. Synaptic Neurosci. 6, 1-12.
  27. Shupliakov O, Bloom O, Gustafsson J S, Kjaerulff O, Low P, Tomilin N, Pieribone V A, Greengard P, and Brodin L (2002) Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl. Acad. Sci. U S A 99, 14476-14481. https://doi.org/10.1073/pnas.212381799
  28. Shupliakov O, Haucke V, and Pechstein A (2011) How synapsin I may cluster synaptic vesicles. Semin. Cell Dev. Biol. 22, 393-399. https://doi.org/10.1016/j.semcdb.2011.07.006
  29. Sudhof T C (2012) The presynaptic active zone. Neuron 75, 11-25. https://doi.org/10.1016/j.neuron.2012.06.012
  30. Yarmola E G, Somasundaram T, Boring T A, Spector I, and Bubb M R (2000) Actin-latrunculin A structure and function. Differential modu- lation of actin-binding protein function by latrunculin A. J. Biol. Chem. 275, 28120-28127.
  31. Zhang W and Benson D L (2001) Stages of synapse development de- fined by dependence on F-actin. J. Neurosci. 21, 5169-5181. https://doi.org/10.1523/JNEUROSCI.21-14-05169.2001