References
- Fearnley, J. M. and Lees, A. J. (1991) Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114: 2283-2301. https://doi.org/10.1093/brain/114.5.2283
- Wang, Y., Gao, J., Miao, Y., Cui, Q., Zhao, W., Zhang, J. and Wang, H. (2014) Pinocembrin protects SH-SY5Y cells against MPP+-induced neurotoxicity through the mitochondrial apoptotic pathway. J. Mol Neurosci. 53: 537-545. https://doi.org/10.1007/s12031-013-0219-x
-
Petit-Paitel, A., Brau, F., Cazareth, J. and Chabry, J. (2009) Involvment of cytosolic and mitochondrial GSK-
$3{\beta}$ in mitochondrial dysfunction and neuronal cell death of MPTP/MPP+-treated neurons. PloS one 4: e5491. https://doi.org/10.1371/journal.pone.0005491 - Itano, Y. and Nomura, Y. (1995) 1-methyl-4-phenyl-pyridinium ion (MPP+) causes DNA fragmentation and increases the Bcl-2 expression in human neuroblastoma, SH-SY5Y cells, through different mechanisms. Brain Res. 704: 240-245. https://doi.org/10.1016/0006-8993(95)01120-X
- Lu, S., Lu, C., Han, Q., Li, J., Du, Z., Liao, L. and Zhao, R. C. (2011) Adipose-derived mesenchymal stem cells protect PC12 cells from glutamate excitotoxicity-induced apoptosis by upregulation of XIAP through PI3-K/Akt activation. Toxicology 279: 189-195. https://doi.org/10.1016/j.tox.2010.10.011
- Lin, Y. L., Wang, G. J., Huang, C. L., Lee, Y. C., Liao, W. C., Lai, W. L., Lin, Y. J. and Huang, N. K. (2009) Ligusticum chuanxiong as a potential neuroprotectant for preventing serum deprivation-induced apoptosis in rat pheochromocytoma cells: functional roles of mitogen-activated protein kinases. J. Ethnopharmacol. 122: 417-423. https://doi.org/10.1016/j.jep.2009.02.011
- Liu, Y. H., Liu, G. H., Mei, J. J. and Wang, J. (2016) The preventive effects of hyperoside on lung cancer in vitro by inducing apoptosis and inhibiting proliferation through Caspase-3 and P53 signaling pathway. Biomed. Pharmacother. 83: 381-391. https://doi.org/10.1016/j.biopha.2016.06.035
-
Kim, S.-J., Um, J.-Y., Hong, S.-H. and Lee, J.-Y. (2011) Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-
${\kappa}B$ activation in mouse peritoneal macrophages. Am. J. Chin. Med. 39: 171-181. https://doi.org/10.1142/S0192415X11008737 - Piao, M. J., Kang, K. A., Zhang, R., Ko, D. O., Wang, Z. H., You, H. J., Kim, H. S., Kim, J. S., Kang, S. S. and Hyun, J. W. (2008) Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochim. Biophys. Acta. 1780: 1448-1457. https://doi.org/10.1016/j.bbagen.2008.07.012
- Zheng, M., Liu, C., Pan, F., Shi, D. and Zhang, Y. (2012) Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: possible cellular mechanisms. Phytomedicine 19: 145-149. https://doi.org/10.1016/j.phymed.2011.06.029
- Hu, J., Wang, Z., Guo, Y. Y., Zhang, X. N., Xu, Z. H., Liu, S. B., Guo, H. J., Yang, Q., Zhang, F. X., Sun, X. L. and Zhao, M. G. (2009) A role of periaqueductal grey NR2B-containing NMDA receptor in mediating persistent inflammatory pain. Mol. Pain 5: 71.
- Wang, W. Q., Ma, C. G. and Xu, S. Y. (1996) Protective effect of hyperin against myocardial ischemia and reperfusion injury. Zhongguo. Yao. Li. Xue. Bao. 17: 341-344.
- Yuning, G. L. Y. M. Y. (2001) Study of Cuscuta australis hyperoside on immunological function of mice in vivo and in vitro. Chinese Journal of Information on TCM. 11: 027.
- Zeng, K. W., Wang, X. M., Ko, H., Kwon, H. C., Cha, J. W. and Yang, H. O. (2011) Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid beta-protein via the PI3K/Akt/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway. Eur. J. Pharmacol. 672: 45-55. https://doi.org/10.1016/j.ejphar.2011.09.177
- Liu, Z., Tao, X., Zhang, C., Lu, Y. and Wei, D. (2005) Protective effects of hyperoside (quercetin-3-o-galactoside) to PC12 cells against cytotoxicity induced by hydrogen peroxide and tert-butyl hydroperoxide. Biomed. Pharmacother. 59: 481-490. https://doi.org/10.1016/j.biopha.2005.06.009
- Chen, Z., Ma, C. and Zhao, W. (1998) Protective effect of hyperin against cerebral ischemia-reperfusion injury. Acta. Pharm. Sin. 33: 14-17.
- Chen, Z., Zhang, J. and Ma, C. (1998) Protective effect of hyperin on cerebral infarction in rats. Zhongguo. Zhong. Yao. Za. Zhi. 23: 626-628, inside back cover.
- Liu, R. L., Xiong, Q. J., Shu, Q., Wu, W. N., Cheng, J., Fu, H., Wang, F., Chen, J. G. and Hu, Z. L. (2012) Hyperoside protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via nitric oxide signal pathway. Brain Res. 1469: 164-173. https://doi.org/10.1016/j.brainres.2012.06.044
- An, R. B., Kim, H. C., Tian, Y. H. and Kim, Y. C. (2005) Free radical scavenging and hepatoprotective constituents from the leaves of Juglans sinensis. Arch. Pharm. Res. 28: 529-533. https://doi.org/10.1007/BF02977753
- Zhu, J. H., Horbinski, C., Guo, F., Watkins, S., Uchiyama, Y. and Chu, C. T. (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am. J. Pathol. 170: 75-86. https://doi.org/10.2353/ajpath.2007.060524
- Chun, H. S., Gibson, G. E., DeGiorgio, L. A., Zhang, H., Kidd, V. J. and Son, J. H. (2001) Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J. Neurochem. 76: 1010-1021. https://doi.org/10.1046/j.1471-4159.2001.00096.x
- Blesa, J., Trigo-Damas, I., Quiroga-Varela, A. and Jackson-Lewis, V. R. (2015) Oxidative stress and Parkinson's disease. Front. Neuroanat. 9: 91.
- Chan, P. H. (2004) Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res. 29: 1943-1949. https://doi.org/10.1007/s11064-004-6869-x
- Cassarino, D. S., Parks, J. K., Parker, W. D., Jr. and Bennett, J. P., Jr. (1999) The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim. Biophys. Acta. 1453: 49-62. https://doi.org/10.1016/S0925-4439(98)00083-0
- Fernandes-Alnemri, T., Litwack, G. and Alnemri, E. S. (1994) CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J. Biol. Chem. 269: 30761-30764.
- Oliver, F. J., de la Rubia, G., Rolli, V., Ruiz-Ruiz, M. C., de Murcia, G. and Mnissier-de Murcia, J. (1998) Importance of poly (ADP-ribose) polymerase and its cleavage in apoptosis Lesson from an uncleavable mutant. J. Biol. Chem. 273: 33533-33539. https://doi.org/10.1074/jbc.273.50.33533
- Pu, X., Song, Z., Li, Y., Tu, P. and Li, H. (2003) Acteoside from Cistanche salsa inhibits apoptosis by 1-methyl-4-phenylpyridinium ion in cerebellar granule neurons. Planta Med. 69: 65-66. https://doi.org/10.1055/s-2003-37029
-
Zhang, C., Yuan, X., Hu, Z., Liu, S., Li, H., Wu, M., Yuan, J., Zhao, Z., Su, J. and Wang, X. (2017) Valproic acid protects primary dopamine neurons from MPP+-Induced Neurotoxicity: Involvement of
$GSK3{\beta}$ Phosphorylation by Akt and ERK through the Mitochondrial Intrinsic Apoptotic Pathway. Biomed. Res. Int. 2017: 12. - Weng, Z., Signore, A. P., Gao, Y., Wang, S., Zhang, F., Hastings, T., Yin, X. M. and Chen, J. (2007) Leptin protects against 6-hydroxydopamine-induced dopaminergic cell death via mitogen-activated protein kinase signaling. J. Biol. Chem. 282: 34479-34491. https://doi.org/10.1074/jbc.M705426200
- Zhao, Q., Ye, J., Wei, N., Fong, C. and Dong, X. (2016) Protection against MPP(+)-induced neurotoxicity in SH-SY5Y cells by tormentic acid via the activation of PI3-K/Akt/GSK3beta pathway. Neurochem. Int. 97: 117-123. https://doi.org/10.1016/j.neuint.2016.03.010
- Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M. E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231-241. https://doi.org/10.1016/S0092-8674(00)80405-5