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BEYOND THE CACTUS RANK OF TENSORS

Edoardo Ballico

Abstract. We study additive decompositions (and generalized additive

decompositions with a zero-dimensional scheme instead of a finite sum of
rank 1 tensors), which are not of minimal degree (for sums of rank 1 ten-

sors with more terms than the rank of the tensor, for a zero-dimensional

scheme a degree higher than the cactus rank of the tensor). We prove
their existence for all degrees higher than the rank of the tensor and,

with strong assumptions, higher than the cactus rank of the tensor. Ex-

amples show that additional assumptions are needed to get the minimally
spanning scheme of degree cactus +1.

1. introduction

Fix positive integers, k and ni, 1 ≤ i ≤ k. Set Y := Pn1 × · · · × Pnk and

r := −1 +
∏k
i=1(ni + 1). Let ν : Y → Pr be the Segre embedding of the

multiprojective space Y , i.e., the embedding of Y induced by the complete
linear system |OY (1, . . . , 1)|. Set X := ν(Y ).

Definition 1.1. The rank rX(q) (resp. cactus rank cX(q)) of the point q ∈ Pr
is the minimal integer |A| (resp. deg(A)), with A ⊂ Y a finite set (resp. a
zero-dimensional scheme) and q ∈ 〈ν(A)〉, where 〈 〉 denote the linear span.

The rank of q is the tensor rank of any tensor T ∈ Ar+1 \ {0} with q as its
equivalence class. See [28] for a general reference for the tensor decomposition
with a strong bent on geometry and algebra and an extensive bibliography. For
symmetric tensors from the point of view of algebraic geometry and commuta-
tive algebra, see [26]. See [7,8,30] for the notion of cactus rank (called scheme
rank in [26]). Any scheme evincing a cactus rank is Gorenstein ([11, Lemma
2.4]).

Notation 1.2. If q ∈ Pr and B ⊂ Y is a zero-dimensional scheme we say that
B minimally spans q if q ∈ 〈ν(B)〉 and q /∈ 〈ν(B′)〉 for any B′ ( B.
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If B evinces the rank or the cactus rank of q ∈ Pr, then B minimally spans
q. We have 〈ν(B)〉 6= (∪B′(Bν(B′)〉) if and only if B minimally spans some
point of q; in this case 〈ν(B)〉 \ (∪B′(Bν(B′)〉) is the set of all points of Pr
minimally spanned by B. If B is a finite set we have 〈ν(B)〉 6= (∪B′(Bν(B′)〉)
if and only if ν(B) is linearly independent. There are zero-dimensional schemes
B, even schemes with one connected component of degree 1 or with all com-
ponents of degree at most 2 with 〈ν(B)〉 6= ∪B′(Bν(B′)〉 and ν(B) linearly
dependent (Examples 3.1, 3.2 and 3.3). Now take a zero-dimensional scheme
A ⊂ Y such that ν(A) is linearly independent. If A has only finitely many
subschemes of degree deg(A)−1 (say e subschemes of degree deg(A)−1), then
ν(A) 6= ∪A′(A〈ν(A′)〉 and ∪A′(A〈ν(A′)〉 is the union of e distinct hyperplanes
of 〈ν(A)〉; if A is curvilinear we have e = |Ared|.

The first aim of this paper is to raise 3 questions, the first one (Question
1.3) being not always true (see Proposition 3.6 for a counterexample for some
zero-dimensional scheme A), but being true in some interesting cases.

Question 1.3. Fix q ∈ Pr and a zero-dimensional scheme A ⊂ Y minimally
spanning q. Set w := dim〈ν(A)〉.

(1) Fix an integer x such that w + 1 ≤ x ≤ r. Is there a zero-dimensional
scheme B minimally spanning q with dim〈ν(B)〉 = x and deg(B) =
deg(A) + x− w?

(2) Is it (1) true at least if x = w + 1?
(3) Is it true if in (1) we drop the condition deg(B) = deg(A) + x− w?
(4) Are (1) or (2) or (3) true if we only require it for a general q ∈ 〈ν(A)〉?

Case (4) of Question 1.3 is known to be true if A is a finite set ([6, Theorem
3.8]).

We prove the strong form (1) of Question 1.3 if either A has at least one
connected component of degree 1 (i.e., A has a single point as a connected
component) or if A is a disjoint union of points and tangent vectors (Theorem
1.4 and Proposition 1.6). In the general case (i.e., for schemes for which either
it is false or we do not know if it is true) we propose a measure of its failure
(see Definition 1.9).

Theorem 1.4. Let A ⊂ Y be a zero-dimensional scheme such that at least
one connected component of A has degree 1. Assume 〈ν(A)〉 6= ∪A′(A〈nu(A′)〉
and fix q ∈ 〈ν(A)〉 \ (∪A′(A〈nu(A′)〉). Set w := dim〈ν(A)〉. Then for each
integer x with w < x ≤ r there is a zero-dimensional scheme B ⊂ Y such that
B minimally spans q, deg(B) = deg(A) + x− w and dim〈ν(B)〉 = x.

Remark 1.5. Take the set-up of Theorem 1.4 and write A = A1 t {p} with
p ∈ Y . The proof of Theorem 1.4 given below constructs B with B = A1 t S
and S a finite set. In particular if A is a finite set we get as B a finite set,
improving [6, Theorem 3.8] from a statement like part (4) to a statement like
part (1) of Question 1.3.
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Proposition 1.6. Let A ⊂ Y be a zero-dimensional scheme such that ν(A) is
linearly independent and each connected component of A has degree at most 2.
Fix q ∈ 〈ν(A)〉 such that q /∈ 〈ν(A′)〉 for any A′ ( A. Then for each integer z
such that deg(A) < z ≤ r + 1 there is a zero-dimensional scheme B ⊂ Y such
that deg(B) = z, B minimally spans q and each connected component of B has
degree at most 2.

Notation 1.7. For any q ∈ Pr let S(q) (resp. Z(q)) denote the set of all finite
sets (resp. zero-dimensional schemes) A ⊂ Y such that |A| = rX(q) (resp.
deg(A) = cX(q)) and q ∈ 〈ν(A)〉.

Note that S(q) 6= ∅, Z(q) 6= ∅ and that if A ∈ (S(q)∪Z(q)), then q /∈ 〈ν(A′)〉
for any A′ ( A.

For each positive integer m let σm(X) ⊆ Pr denote the m-secant variety
of X, i.e., the closure in Pr of the union of all linear spaces 〈B〉 with B a
finite subset of X with |B| = m. Each σm(X) is an irreducible variety with
dimσm(X) ≤ min{m(n + 1) − 1, r}, where n := n1 + · · · + nk = dimX. The
border rank bX(q) of q ∈ Pr is the minimal integer m such that q ∈ σm(X).
When dimσm(X) = m(n+1)−1 many papers studied if |S(q)| = 1 for a general
q ∈ σm(X) ([5, 9, 10, 14–25, 27, 29, 31]). This problem is called uniqueness or
generic uniqueness for σm(X). If m(n + 1) − 1 = r (and so σm(X) = Pr),
almost never |S(q)| = 1 for a general q ∈ σm(X) and the consensus is that the
few cases with |S(q)| = 1 have some interesting geometry. If m(n+ 1)− 1 < r
the case with |S(q)| > 1 are usually very interesting and many papers proved
(for certain k, n1, . . . , nk) that if r � m(n+ 1), then generic uniqueness holds.
We may also ask if generic uniqueness holds for the set Z(q), but we do not
have evidence for it, except a few cases with very low m. We need these cases
to construct a counterexample to Question 1.3 (see Proposition 3.6).

Question 1.8. Let X ⊂ Pr be the Segre variety of a product of k projective
spaces. Is rX(q) ≤ kbX(q) for all q ∈ Pr?

Question 1.8 is true for all q ∈ Pr with bX(q) ≤ 3 ([12, Proposition 1.1
and Theorem 1.2], [1, Theorem 1], [4]). The question is motivated by a similar
question concerning symmetric tensors, i.e., degree d homogeneous polynomials
in n+ 1 variables, i.e., for the order d Veronese embedding of Pn. For a Segre
variety the number k of its positive dimensional factors is a weak substitute
for the order of the Veronese embedding as evinced by the similarities between
the classification of the ranks for tensors and symmetric tensors with very low
border rank ([1,2,4,12]). Question 1.8 is in general false if we use cX(q) instead
of bX(q), even for symmetric tensors when k = 3 and for general homogeneous
degree d polynomials in a high number of variables ([8]), but it may be true
if instead of the cactus rank we consider the smoothable rank (i.e., in the
definition of cactus rank we only allow smoothable zero-dimensional schemes)
or the curvilinear rank (i.e., we only allow curvilinear zero-dimensional schemes
in the definition ([3, Questions 1 and 2, Theorem 1]).
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Definition 1.9. For any q ∈ Pr let δX(q) be the minimal integer t > cX(q)
such that there is a degree t zero-dimensional scheme A ⊂ Y with q ∈ 〈ν(A)〉
and A + Z for any Z ∈ Z(q).

Any scheme A as in Definition 1.9 minimally spans q. Proposition 3.4 gives
an example with δX(q)− cX(q) ≥ 2.

Question 1.10. What is the maximum of all δX(q)− cX(q), q ∈ Pr?

Remark 1.11. Theorem 3.6 shows that δX(q) ≤ rX(q) + 1 for all q ∈ Pr.

In our proofs we focus on one connected component E of A, say A = A1tE;
E is a point in Theorem 1.4. We think about A1 t E as a partial additive
decomposition of the tensor associated to q ∈ Pr (e.g. [26, Def. 1.30], [13]
and references therein) (although it is not canonically associated to q, because
in our proofs not even A is canonically associated to q) and we hope that
this approach and the use of zero-dimensional schemes may be used for other
additive decompositions.

2. The proofs

Recall that Y = Pn1 × · · · × Pnk and that X = ν(Y ), where ν : Y → Pr,
r = −1 +

∏k
i=1(ni + 1), is the Segre embedding of the multiprojective space

Y . Let πi : Y → Pni denote the projection onto the i-th factor of Y . Let
ηi : Y →

∏
j 6=i Pnj denote the projection onto all factors of Y , except the i-th

one.

Remark 2.1. Let Z ⊂ Y be a zero-dimensional scheme, which is curvilinear,
i.e., for each connected component E of Z the Zariski tangent space of E at
the point Ered has either dimension 0 (i.e., E is a point) or dimension 1 (and
hence E is contained in the germ of a smooth curve). Then Z has finitely
many subschemes and in particular it has finitely many subschemes of degree
deg(Z)− 1. Thus if A is as in Proposition 1.6, then 〈ν(A)〉 ) ∪A′(A〈ν(A′)〉.

This is our main lemma.

Lemma 2.2. Fix a linear space V ⊂ Pr such that dimV ≤ r − 2 and p ∈ X
such that p /∈ V . Then there is a line L ⊂ X such that L ∩ V = ∅ and
p ∈ 〈L ∪ V 〉.

Proof. Set V ′ := 〈V ∪{p}〉. Let o = (o1, . . . , ok) be the point such that ν(o) = p.
Set Ti := η−1i (o) and T = T1 ∪ · · · ∪Tk. Note that ν(Ti) is a projective space of
dimension ni, that ν(Ti) ∩ ν(Tj) = {p} for all i 6= j and that T is the union of
all lines of X passing through p. Since ν(Ti) is a linear space, Wi := V ∩ ν(Ti)
is a linear subspace of V . Since o /∈ V , we have dimWi ≤ ni − 1. Let Mi ⊂ Y
be the set such that ν(Mi) = Wi.
Claim 1. If there is i ∈ {1, . . . , k} such that dimWi ≤ ni − 2 (with the
convention Wi = ∅ if ni = 1), then there is a line L ⊂ X such that p ∈ L and
L ∩ V = ∅.
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Proof of Claim 1. Take as L any line of ν(Ti) containing p and not intersecting
Wi, e.g., a general line L of ν(Ti) containing p.

By Claim 1 we may assume dimWi = ni− 1 for all i. Since dimWi = ni− 1
and p /∈ Wi, then V ′ contains ν(T ) and V ′ is spanned by the union of V
and any point of ν(Ti) \Wi (for a single index i). Since dimV ≤ r − 2, we
have V ′ 6= Pr. Fix a general x1 ∈ Pn1 and set x := (x1, o2, . . . , ok). We have
x ∈ T1 \M1. Set R′′ := η−11 (x1) ∼= Pn1 . Take a line (up to the identification of
R′′ with Pn1) R′ ⊆ R′′ with x ∈ R′ and set R := ν(R′). R is a line containing
ν(x). Since x /∈ M1, 〈V ∪ R〉 contains T1 and hence contains p. Since p /∈ V
and dimR = 1, either R ∩ V = ∅ (and in this case we may take R as L) or
〈R ∪ V 〉 = V ′. Thus we may assume that we are in the latter case for every
line R′ ⊆ R′′ with x ∈ R′. Thus ν(R′′) ⊂ V ′. Take a general x2 ∈ Pn2 and
set x′ := (x1, x2, o3, . . . , ok). Set D′′ := η−12 (x2) ∼= Pn2 . Take a line (up to the
identification of D′′ with Pn2) D′ ⊆ D′′ with x′ ∈ D′ and set D := ν(D′). D
is a line containing ν(x′). Since x′ /∈ M2, 〈V ∪DR〉 contains ν(T2) and hence
contains p. Since p /∈ V and dimD = 1, either D ∩ V = ∅ (and in this case
we may take D as L) or 〈D ∪ V 〉 = V ′. Thus we may assume that we are
in the latter case for every line D′ ⊆ D′′ with x′ ∈ D′. Thus ν(D′′) ⊂ V ′.
We see that V ′ contains all points ν((x1, x2, o3, . . . , ok)). If k = 2 we get
V ′ = Pr, a contradiction. Now assume k > 2. Take a general x3 ∈ Pn3 and
set y = (x1, x2, x3, o4, . . . , ok) ∈ T3 \M3. Set R1 := η−13 (x3). We use R1 as
we used D′′. Since W3 is a hyperplane of ν(T3) we get that V ′ contains all
ν(y1, y2, y3, ok, . . . , ok) with (y1, y2, y3) ∈ Pn1 × Pn2 × Pn3 . If k = 3 we get
V ′ = Pr, a contradiction. If k > 3 we use first η4, then η5, and so on. �

Proof of Theorem 1.4. Write A = A1t{o} with o /∈ (A1)red. Set V := 〈ν(A1)〉.
Since A minimally spans q, we have ν(o) /∈ V . By Lemma 2.2 there is a line
L ⊂ X such that V ∩L = ∅ and o ∈ 〈V ∪L〉. Fix two general points p1, p2 ∈ L,
write pi = ν(qi), i = 1, 2, and set B := A1 ∪ {q1, q2}. Since ν(A1) ⊆ V and
o ∈ 〈V ∪ L〉, we have q ∈ 〈ν(B)〉. To conclude the proof when x = w + 1 it is
sufficient to prove that for each B′ ( B we have q /∈ 〈ν(B′)〉. Since for each
B′ ( B there is a scheme B′′ with B′ ⊆ B′′ ⊂ B and deg(B′′) = deg(B) − 1,
it is sufficient to test all B′ ⊂ B with deg(B′) = deg(B)− 1 = deg(A).

First assume that B′ ⊃ A1, i.e., B′ = A1 t {qi} for some i. Since p1, p2 are
general in L, we have o 6= qi for all i. Since dim〈ν(A1)∪L〉 = dim〈A1〉+ 2, we
have dim〈ν(A1)∪{a}〉 = dim〈A1〉+ 1 if a ∈ {ν(o), p1, p2} and the linear spaces
〈ν(A1) ∪ {a}〉, a ∈ {ν(o), p1, p2}, are different. Thus 〈ν(A1) ∪ {pi}〉 ∩ 〈ν(A1) ∪
{ν(o)}〉 = 〈ν(A1)〉. Hence q /∈ 〈ν(B′)〉.

Now assume A1 * B′, i.e., B′ = A2 t {q1, q2} with A2 ⊂ A1 and deg(A2) =
deg(A1) − 1. Since L = 〈{p1, p2}〉 and V ∩ L = ∅, we get 〈ν(B′)〉 ∩ 〈ν(A)〉 =
〈ν(A2 ∪ {o})〉 and so q /∈ 〈ν(B′)〉.

The scheme B solves the case x = w + 1 and it has a degree 1 connected
component. If r > w+1 we just apply the proof to B instead of A and conclude
by induction on the integer x− w. �
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For any zero-dimensional scheme Z ⊂ Y set Y [Z] :=
∏k
i=1〈πi(Z)〉, where

the linear span 〈πi(Z)〉 is taken in Pni . Note that Y [Z] ⊆ Y is the minimal
multiprojective subspace of Y containing Z and that the i-th factor of Y [Z]
has dimension at most min{ni,deg(Z)− 1}.

To prove Proposition 1.6 we first need the case deg(A) = 2 and A connected,
i.e., when A is a tangent vector of Y .

Lemma 2.3. Let τ(X) ⊂ Pr denote the tangential variety of X. Since X
is smooth, we have τ(X) = ∪p∈XTpX. Since each element of TpX \ {p} is
contained in a line through p and each such a line is spanned by a tangent
vector of X at p, v exists. Fix any q ∈ τ(X) \ X with r := rX(q) > 1. Let
v ⊂ Y be a connected degree 2 scheme such that q ∈ 〈ν(v)〉. Then there is a
degree 3 scheme B = u t {p} with u a connected degree 2 scheme, ured = vred,
〈ν(v)〉 ⊂ 〈ν(B)〉 and q /∈ 〈ν(B′)〉 for any B′ ( B.

Proof. It is sufficient to find B ⊂ Y [v] and hence we may assume Y = Y [v].
Since Y [v] ∼= (P1)r (by the proof of [1, Theorem 1]), in this proof we assume
k = r and ni = 1 for all i. Set {o} := vred and write o = (o1, . . . , ok). Set
Ti := η−1i (oi), i = 1, . . . , k, and T := T1 ∪ · · · ∪ Tk. Note that each ν(Ti) is a
line through ν(o). Moreover, dim〈ν(T )〉 = r and hence for each pi ∈ Ti \ {o},
i = 1, . . . , k, the set ν({o, p1, . . . , pk}) is linearly independent and spans 〈ν(T )〉.
We have ν(v) ⊂ 〈ν(T )〉. For each i ∈ {1, . . . , k} set T̂i := ∪j 6=iTi. We have

dim〈ν(T̂i)〉 = r − 1, ν(v) ⊂ 〈ν(T )〉, ν(v) ∩ 〈ν(T̂i)〉 = ν(o) and 〈{q, ν(o)}〉 =
〈ν(v)〉. The proof of [1, Theorem 1] also gave the existence of pi ∈ Ti \{o} such
that q ∈ 〈ν({p1, . . . , pk})〉. Thus for each i = 1, . . . , k the set 〈{q, ν(pi), ν(o)}〉 is

a plane contained in 〈ν(T )〉 and hence the set Li := 〈ν(T̂i)〉∩〈{q, ν(pi), ν(o)}〉 is
a line through ν(o). Any such line is a tangent line to X at ν(o) and so there is
a degree 2 connected zero-dimensional scheme vi ⊂ Y such that {o} = (vi)red
and Li = 〈ν(vi)〉. Fix any i and set u := vi, p := pi and B := vi ∪ {pi}.
Since ured = {o} 6= {p}, we have deg(B) = 3. Since q ∈ 〈ν({p1, . . . , pk})〉
and {p1, . . . , pk} \ {pi} ⊂ T̂i, we have q ∈ 〈Li ∪ {pi}〉 = 〈ν(B)〉. Since ν(o) ∈
〈ν(vi)〉 ⊂ 〈ν(B)〉, we have 〈ν(v)〉 ⊂ 〈ν(B)〉. Since r > 1 and ν({o, pi}) ⊂ ν(Ti),

we have q /∈ 〈ν({o, pi)})〉. Since 〈ν(vi)〉 ⊂ 〈ν(T̂i)〉 and q /∈ 〈ν(T̂i)〉, we have
q /∈ 〈ν(B′)〉 for any B′ ( B. �

Proof of Proposition 1.6. We use induction on the integer deg(A), the starting
point of the induction, i.e., the case deg(A) = 1, being true by Theorem 1.4.

If A has at least one degree 1 connected component, then we may apply
Theorem 1.4. Now assume that each connected component of A has degree 2.
If deg(A) = 2, then Lemma 2.3 gives the case w = 3 and we apply Theorem
1.4 to the degree 3 scheme given by Lemma 2.3. Now assume deg(A) ≥ 4 and
write A = A1 t v with v connected deg(v) = 2. Set {o} := vred. Since ν(A) is
linearly independent, we have 〈ν(A1)〉 ∩ 〈ν(v)〉 = ∅ and hence there are unique
q1 ∈ 〈ν(A1)〉 and q2 ∈ 〈ν(v)〉 such that q ∈ 〈{q1, q2}〉. By [12, Proposition 1.1]
or [1, Theorem 1] we have 1 ≤ rX(q2) ≤ k.
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First assume rX(q2) = 1. Thus there is a ∈ X with ν(a) = q2. Since
q2 ∈ 〈ν(v)〉 and 〈ν(A1)〉∩〈ν(v)〉 = ∅, {a} is a connected component of A1∪{a}.
Since A1 ∪ {a} minimally spans q, we may apply Theorem 1.4 to A1 ∪ {a} and
conclude the proof of Proposition 2.3 in this case.

From now on we assume r := rX(q2) > 1. Set {o} := vred. We need the
set-up of the proof of Lemma 2.3, which in turn uses the set-up of [1]. We have
Y [v] = (P1)r. Call B1 = ut{p} one of the schemes given by Lemma 2.3 for q2
and v with u connected of degree 2. In particular ured = {o} and p 6= o. Since
〈ν(v)〉 ⊂ 〈ν(B1)〉, we have q ∈ 〈ν(A1∪B1)〉. We also know that for any E ( B1,
we have q2 /∈ 〈ν(E)〉. To get u, p we made some choices and the main one was
to fix one of the r non-trivial factors of Y [v], say the one corresponding to the
index i ∈ {1, . . . , k}. The points p and o have the same coordinates, except the
i-th one. To stress that the pair (u, p) depends from the choice of i, we write it
as (u[i], p[i]). We take the set-up of the proof of Lemma 2.3, but now we have
Y [v] = (P1)r. We permute the factors of Y so that the first r factors of Y are
the r non-trivial factors of Y [v]. With this convention we have Ti := η−1i (oi),
1 ≤ i ≤ r, and T = T1 ∪ · · · ∪ Tr and we have defined (u[i], p[i]) if and only if
1 ≤ i ≤ r. Note that Tν(o)ν(Y [v]) = 〈ν(T )〉, where Tν(o)ν(Y [v]) ⊂ Pr is the
Zariski tangent space at ν(o) to the r-dimensional smooth variety ν(Y [v]) (the
set Tν(o)ν(Y [v]) is an r-dimensional linear subspace of Pr).

Claim 1. Proposition 1.6 is true when Tν(o)ν(Y [v]) ⊆ 〈ν(A)〉.
Proof of Claim 1. Assume Tν(o)ν(Y [v]) ⊆ 〈ν(A)〉. Recall that

〈ν(v)〉 ⊂ Tν(o)ν(Y [v]) and 〈ν(A1)〈∩〈ν(v)〉 = ∅.

Thus 〈ν(A1)〉 ∩ Tν(o)ν(Y [v]) is an (r − 2)-dimensional linear subspace E of
Tν(o)ν(Y [v]) with E∩〈ν(v)〉 = ∅ and F := 〈{ν(o)}∪E〉 is an (r−1)-dimensional
linear subspace of Tν(o)ν(Y [v]) with F ∩ 〈ν(v)〉 = {ν(o)}. Since Tν(o)ν(Y [v]) =
〈ν(T )〉, for any ai ∈ Ti \ {o}, i = 1, . . . , r, the set {ν(o), ν(a1), . . . , ν(ar)} is
linearly independent and it spans Tν(o)ν(Y [v]). Thus there is i ∈ {1, . . . , r}
such that 〈ν(A)〉 = 〈ν(A1∪{o, a1})〉. Apply Theorem 1.4 to q and A1∪{o, a1}.

Let B′ ⊆ A1∪B1 be the minimal subscheme of A1∪B1 such that q ∈ 〈ν(B)〉.
Every connected component of B′ has degree at most 2.

(a) Assume deg(B′) > deg(A), i.e., B′ = A1 ∪ B1. B′ solves the case
x = w + 1. Since B′ minimally spans q and B′ has a degree 1 connected
components, Theorem 1.4 applied to (q,B′) gives all cases with x > w + 1.

(b) Assume deg(B′) = deg(A). If B′ = A1 ∪ {o, p}, then we may apply
Theorem 1.4 to (q,B′) and get all x > w. Now assume B′ = E ∪ B1 with
E ⊂ A1 and deg(E) = deg(A1)−1. The scheme E has 2 connected components
of degree 1 and hence all cases with x > w are true by Theorem 1.4 applied to
the pair (q,B′). Now assume B′ = A1∪u. Since u 6= v we have B′∩A = A∪{o}.
Since q ∈ 〈ν(B′)〉 ∩ 〈ν(A)〉 and q /∈ 〈ν(A1 ∪{o})〉, we get 〈ν(A1 ∪u)〉 = 〈ν(A)〉.
Since u 6= v and ν(v) ⊂ ν(B1), we get ν(p) ∈ 〈ν(A)〉. Assume that this is
true for all i = 1, . . . , r, i.e., that ν(p[i]) ∈ 〈ν(A)〉 for i = 1, . . . , r. Since



1594 E. BALLICO

p[i] ∈ Ti \ {o}, the set {ν(o), ν(p1), . . . , ν(pr)} spans 〈ν(T )〉 = Tν(o)(ν(Y [v]).
Since ν(o) ∈ 〈ν(A)〉, it is sufficient to use Claim 1.

(c) Assume deg(B′) < deg(A). If B′ has at least one connected component
of degree 1, then we may apply Theorem 1.4 to (q,B′), because B′ minimally
spans q. Now assume that all connected components of B′ have degree 2 (as
the ones of A) and so B′ = A2 ∪ u with A2 union of some of the connected
components of A1. Since q ∈ 〈ν(A)〉 \ 〈ν(A1 ∪{o})〉, we get ν(u) ⊂ 〈ν(A)〉. We
conclude as in step (b) using Claim 1. �

3. The examples

Example 3.1. Assume n1 ≥ 2 and take a plane M ⊆ Pn1 . If k > 1 fix ai ∈ Pni

for all i > 1 and let j : M → Y be the embedding with πi(j(x)) = ai for all i > 1
and π1(j(x)) = x, x ∈M . Let C ⊂M be a smooth plane cubic. Let o ∈ C be
one of its 9 flexes and A = 4o ⊂ C the degree 4 effective divisor of C with o
as its reduction. Note that A spans M , but that it is not linearly independent
and that each proper subscheme of A is contained in the tangent line L of C
at o. The scheme ν(j(A)) is not linearly independent, but it minimally spans
each point of ν(j(M \ L)).

Example 3.2. Assume k ≥ 2. Take M := P1×P1 and take any embedding j :
of P1×P1 into Y as a multiprojective subspace. Let C ∈ |OM (3, 3)| be a smooth
curve such that there is o ∈ C such that the line L ∈ |OM (1, 0)| intersects C
at o with multiplicity 3. Let A ⊂ C be the effective degree 4 divisor of C
with o as its reduction. The scheme ν(j(A)) is not linearly independent, but it
minimally spans any point of 〈ν(j(A)〉 \ ν(j(L)).

Example 3.3. Assume k ≥ 2 and n2 ≥ 2, so that Y contains the multipro-
jective space Y ′ := P1 × P2. Fix o ∈ P2 and a1, a2, a3 ∈ P1 with ai 6= aj
for all i 6= j. Let vi be the general tangent vector of Y ′ at (ai, o). We have
dim〈ν(v1 ∪ v2 ∪ v3)〉 = 4 (and so ν(v1 ∪ v2 ∪ v3) is not linearly independent),
dim〈ν(B)〉 = 3 for any degree 5 subscheme B ⊂ v1 ∪ v2 ∪ v3, and v1 ∪ v2 ∪ v3
has only 3 degree 5 subschemes. Thus v1 ∪ v2 ∪ v3 minimally spans a general
q ∈ 〈ν(v1∪v2∪v3)〉. This example shows that the linear independence assumed
in Proposition 1.6 is not a consequence of the existence of some q ∈ 〈ν(A)〉 such
that A minimally spans q. Now assume n1 + · · ·+nk > 3, i.e., assume Y ′ 6= Y .
Take a general p ∈ Y \ Y ′ and set A := v1 ∪ v2 ∪ v3 ∪ {p}. A minimally spans
a general q ∈ 〈ν(A)〉, but ν(A) is not linearly independent; this is an example
relevant to both Theorem 1.4 and Proposition 1.6.

Let D ⊂ Y be an effective divisor. For any scheme Z ⊂ Y let ResD(Z)
denote the residual scheme of Z with respect to D, i.e., the closed subscheme
of Y with IZ : ID as its ideal sheaf. We have ResD(Z) ⊆ Z. If Z is zero-
dimensional, then deg(Z) = deg(ResD(Z)) + deg(Z ∩D). Note that Z ⊂ D if
and only if ResD(Z) = ∅.
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Remark 3.4. Assume k ≥ 3. Then Z(q) = S(q) and |S(q)| = 1 for a general
q ∈ σ2(X).

Proof. Since k ≥ 2 we have X ( σ2(X) and so cX(q) = 2. A general u ∈ τ(X)
has rank k. Since k ≥ 3, we get that τ(X) is a proper subvariety of σ2(X).
Since q is general, we get Z(q) = S(q). The generic uniqueness is very classical
and true for k = 3, n1 = n2 = n3 = 1 by the case a = 2 of [17, Theorem 1.2]
and then true for all k ≥ 3 and ni ≥ 1, by an inductive method as in [10]. �

Proposition 3.5. Take q ∈ τ(X) \ X. We have |Z(q)| = 1 if and only if
rX(q) ≥ 3.

Proof. Set m := rX(q). Since q /∈ X, we have rX(q) > 1. We have cX(q) = 2.
Fix any connected degree 2 zero-dimensional scheme Z such that q ∈ 〈ν(Z)〉.
Let Y ′ ⊆ Y be a minimal multiprojective space such that q ∈ 〈ν(Y ′)〉. The
proof of [1, Theorem 1] gives Y ′ = Y [Z] ∼= (P1)m. If m = 2 we get that S(q)
is infinite and 2-dimensional and (in characteristic 6= 2) Z(q) \ S(q) is infinite
and 1-dimensional. Now assume m > 2. Since m > 2, each element of Z(q) is
connected. Assume the existence of A ∈ Z(q) such that A 6= Z. We saw that
Y [A] = Y [Z] and so it is sufficient to consider the case Y = Y ′, i.e., the case
k = m and ni = 1 for all i. Write {o} := Zred, {a} := Ared, o = (o1, . . . , om)
and a = (a1, . . . , am).

First assume a = o. In this case the two distinct lines 〈ν(Z)〉 and 〈ν(A)〉
meets only at ν(a) and so q = ν(a) has rank 1, contradicting our assumption.

Now assume a 6= o, say a1 6= o1. Set D := π−11 (a1). We have ResD(A) = {a}
and ResD(Z) = Z. Assume for the moment aj 6= oj for some j > 1, say a2 6= o2.

Set D′ := π−12 (a2). We have ResD+D′(A) = ∅ and ResD+D′(Z) = Z. Let
γ : (P1)m → (P1)m−2 denote the projection onto the last m−2 factors of (P1)m.
Sincem > 2 and Z is general, γ|Z is an embedding. Thus h1(IZ(0, 0, 1 . . . , 1)) =

h1((P1)m−2, Iγ(Z)(1, . . . , 1)) = 0. Since ResD+D′(A) = ∅ and ResD+D′(Z) 6= ∅,
[2, Lemma 5.1(a)] gives a contradiction. Now assume aj = oj for all j > 1. Set
T := π−1m (am). We have ResT (Z∪A) = {o, a} and hence ResT (A)∩ResT (Z) =
∅. Since a1 6= o1, we have a 6= o and h1(I{o,a}(1, . . . , 1, 0)) = 0, contradicting
[2, Lemma 5.1(a)]. �

Proposition 3.6. Assume k ≥ 5 and ni ≥ 2 for all i. Let Z ⊂ Y be a general
degree 3 connected curvilinear scheme. Fix q ∈ 〈ν(Z)〉 such that q /∈ 〈ν(Z ′)〉
for any Z ′ ( Z.

(a) Z(q) = {Z}.
(b) A ⊃ Z for any degree 4 scheme A such that q ∈ 〈ν(A)〉.

Proof. Since Y is smooth and connected, the set of all its connected curvilin-
ear subschemes with a prescribed degree is irreducible. The proof of [4] gives
Y [Z] ∼= (P2)k (more precisely, this is the only case with Y [Z] ∼= (P2)k, i.e., it is
the only case with dimY [Z] = 2k) and rX(q) = 2k − 1 > 3. Thus no element
of Z(q) is reduced. Since 2k − 1 > k, we have q /∈ τ(X) ([12, Proposition 1.1],
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[1, Theorem 1]). Thus cX(q) = 3. Assume the existence of B ∈ Z(q) \ {Z}.
Since 2k− 1 > k+ 1 and any element of τ(X) has rank at most k ([12, Propo-
sition 1.1], [1, Theorem 1]), B is connected. By the list of cases (i), (ii), (iii)
and (v) in [12, Theorem 1.2] we see that B is curvilinear. Since rX(q) = 2k−1,
we see that 〈πi(B)〉 = 2 for all i. Take any D ∈ |IB(1, 1, 0, . . . 0)| (it exists, be-
cause h0(P2 × P2,OP2×P2(1, 1)) = 9. We have ResD(B) = ∅ and ResD(Z) ⊆ Z
and so ResD(B ∪ Z) ⊆ Z. Let γ : Y →

∏k
i=3 Pni (resp. α : Y → Pn1 × Pn2)

denote the projection of Y onto the product of its last k − 2 factors (resp. its
first two factors). Since Z is general and k ≥ 4, γ|Z is an embedding and so

h1(IZ(0, 0, 1, . . . , 1)) = h1(
∏k
i=3 Pni , Iγ(Z)(1, . . . , 1)). Since Z is general, γ(Z)

is the general degree 3 curvilinear subscheme of
∏k
i=3 Pni and in particular

π3(γ(Z)) = π3(Z) spans a plane. Hence h1(
∏k
i=3 Pni , Iγ(Z)(1, . . . , 1)) = 0.

Thus h1(IResD(B∪Z)(0, 0, 1, . . . , 1)) = 0. Since ResD(B) = ∅, [2, Lemma 5.1(a)]
gives Z ⊂ D, i.e., |Iα(Z)(1, 1)| ⊆ |Iα(A)(1, 1)|. Since Z is general, α|Z is an em-
bedding and α(Z) is a general connected degree 3 zero-dimensional subscheme
of Pn1×Pn2 . Since n1 ≥ 2 and n2 ≥ 2, we see that h1(Pn1×Pn2 , Iα(Z)(1, 1)) = 0
and that α(Z) is the scheme-theoretic base locus of |Iα(Z)(1, 1)|. Thus α(Z) =
α(B), i.e., πi(Z) = πi(B) for i = 1, 2. Using the first and the i-th factor of Y ,
i = 3, . . . , k, of Y instead of the first and the second one, we get πi(B) = πi(Z)
for all i, i.e., B = Z, a contradiction.

Now we prove part (b). For every i ∈ {1, . . . , k} let εi ∈ Nk be the mul-
tiindex (d1, . . . , dk) with di = 1 and dj = 0 for all j 6= 1. By part (a)
we may assume deg(A) = 4. We repeat the proof of (a) with A instead of
B. We get deg(α(A)) = 4 (i.e., α|A is an embedding) and |Iα(A)(1, 1)| (
|Iα(Z)(1, 1)|. Since dim |Iα(Z)(1, 1)| = dim |OPn1×Pn2 (1, 1)|−3, we get h1(Pn1×
Pn2 , Iα(A)(1, 1)) = 0. Since α|A is an embedding, we get h1(IAε1+ε2) = 0. Us-

ing any two other factors of Y instead of the first two ones we get h1(IAεi+εj) =
0 for all i 6= j and hence h1(IA(a1, . . . , ak) = 0 for all (a1, . . . , ak) ∈ Nk with
at least 2 positive components. Since k ≥ 4 we get h1(IA′(1, . . . , 1, 0, 0) = 0
for any A′ ⊆ A. Take T ∈ |IZεk−1 + εk|. We have ResT (Z) = ∅ and so
ResT (Z ∪ A) ⊆ A. Since ResT (Z) = ∅ and h1(IResT (Z∪A)(1, . . . , 1, 0, 0)) = 0,
[2, Lemma 5.1(a)] gives A ⊂ T . Thus |IZ(0, . . . , 0, 1, 1)| ⊆ |IA(0, . . . , 0, 1, 1)|.
Since we proved that dim |IA(0, . . . , 0, 1, 1)| = dim |OY (0, . . . , 0, 1, 1)| − 4, we
get a contradiction. �

3.1. A toy example

Here we give a toy example, which shows why we think that our approach
works in many cases. Suppose you have q ∈ Pr and a zero-dimensional scheme
A ⊂ Y minimally spanning q with A = A1tA2. Assume that we may control A2

so that for any q2 minimally spanned by A2 we may find a “nice” B1 ⊂ Y with
q2 ∈ 〈ν(B1)〉; here “nice” may mean that it has al least one degree 1 component,
so that A1 ∪ B1 has at least one degree 1 connected component, so that we
may apply Theorem 1.4 to A2 ∪ B1. There are q1 ∈ 〈ν(A1)〉 and q2 ∈ 〈ν(A2)〉
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such that q ∈ 〈{q1, q2}〉 and the points q1, q2 are uniquely determined by q
if and only if 〈ν(A1)〉 ∩ 〈ν(A2)〉 = ∅. Using q2 and A2 we get B1. We have
q ∈ 〈ν(A1 ∪ B1)〉. If A1 ∪ B1 minimally span q (this is always the case if
〈ν(A1)〉∩ 〈ν(B1)〉 = ∅), then we may use A1∪B1, except that dim〈ν(A1∪B1)〉
and deg(A1∪B1) depends on B1 (you need to get deg(B1) as small as possible);
this is exactly how we used Lemma 2.2 to prove Theorem 1.4. If A1 ∪B1 does
not minimally span q, we take B′ ⊂ A1 ∪ B1 which minimally spans q. If
A1 ∩ B1 = ∅ and B′ ⊇ B1, we use B′, because B1 is a union of some of the
connected components of B′. The practical implementation of this approach
(and the technical problems that may arise in its use) are mirrored in our use
of Lemma 2.3 in the proof of Proposition 1.6.
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[11] W. Buczyńska and J. Buczyński, Secant varieties to high degree veronese reembed-

dings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom.
23 (2014), 63–90.
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