BEYOND THE CACTUS RANK OF TENSORS

Edoardo Ballico

Abstract

We study additive decompositions (and generalized additive decompositions with a zero-dimensional scheme instead of a finite sum of rank 1 tensors), which are not of minimal degree (for sums of rank 1 tensors with more terms than the rank of the tensor, for a zero-dimensional scheme a degree higher than the cactus rank of the tensor). We prove their existence for all degrees higher than the rank of the tensor and, with strong assumptions, higher than the cactus rank of the tensor. Examples show that additional assumptions are needed to get the minimally spanning scheme of degree cactus +1 .

1. introduction

Fix positive integers, k and $n_{i}, 1 \leq i \leq k$. Set $Y:=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}$ and $r:=-1+\prod_{i=1}^{k}\left(n_{i}+1\right)$. Let $\nu: Y \rightarrow \mathbb{P}^{r}$ be the Segre embedding of the multiprojective space Y, i.e., the embedding of Y induced by the complete linear system $\left|\mathcal{O}_{Y}(1, \ldots, 1)\right|$. Set $X:=\nu(Y)$.
Definition 1.1. The rank $r_{X}(q)$ (resp. cactus rank $\left.c_{X}(q)\right)$ of the point $q \in \mathbb{P}^{r}$ is the minimal integer $|A|$ (resp. $\operatorname{deg}(A)$), with $A \subset Y$ a finite set (resp. a zero-dimensional scheme) and $q \in\langle\nu(A)\rangle$, where \rangle denote the linear span.

The rank of q is the tensor rank of any tensor $T \in \mathbb{A}^{r+1} \backslash\{0\}$ with q as its equivalence class. See [28] for a general reference for the tensor decomposition with a strong bent on geometry and algebra and an extensive bibliography. For symmetric tensors from the point of view of algebraic geometry and commutative algebra, see [26]. See $[7,8,30]$ for the notion of cactus rank (called scheme rank in [26]). Any scheme evincing a cactus rank is Gorenstein ([11, Lemma 2.4]).

Notation 1.2. If $q \in \mathbb{P}^{r}$ and $B \subset Y$ is a zero-dimensional scheme we say that B minimally spans q if $q \in\langle\nu(B)\rangle$ and $q \notin\left\langle\nu\left(B^{\prime}\right)\right\rangle$ for any $B^{\prime} \subsetneq B$.

[^0]If B evinces the rank or the cactus rank of $q \in \mathbb{P}^{r}$, then B minimally spans q. We have $\left.\langle\nu(B)\rangle \neq\left(\cup_{B^{\prime} \subsetneq B} \nu\left(B^{\prime}\right)\right\rangle\right)$ if and only if B minimally spans some point of q; in this case $\left.\langle\nu(B)\rangle \backslash\left(\cup_{B^{\prime} \subsetneq B} \nu\left(B^{\prime}\right)\right\rangle\right)$ is the set of all points of \mathbb{P}^{r} minimally spanned by B. If B is a finite set we have $\left.\langle\nu(B)\rangle \neq\left(\cup_{B^{\prime} \subsetneq B} \nu\left(B^{\prime}\right)\right\rangle\right)$ if and only if $\nu(B)$ is linearly independent. There are zero-dimensional schemes B, even schemes with one connected component of degree 1 or with all components of degree at most 2 with $\left.\langle\nu(B)\rangle \neq \cup_{B^{\prime} \subsetneq B} \nu\left(B^{\prime}\right)\right\rangle$ and $\nu(B)$ linearly dependent (Examples 3.1, 3.2 and 3.3). Now take a zero-dimensional scheme $A \subset Y$ such that $\nu(A)$ is linearly independent. If A has only finitely many subschemes of degree $\operatorname{deg}(A)-1$ (say e subschemes of degree $\operatorname{deg}(A)-1$), then $\nu(A) \neq \cup_{A^{\prime} \subsetneq A}\left\langle\nu\left(A^{\prime}\right)\right\rangle$ and $\cup_{A^{\prime} \subsetneq A}\left\langle\nu\left(A^{\prime}\right)\right\rangle$ is the union of e distinct hyperplanes of $\langle\nu(A)\rangle$; if A is curvilinear we have $e=\left|A_{\text {red }}\right|$.

The first aim of this paper is to raise 3 questions, the first one (Question 1.3) being not always true (see Proposition 3.6 for a counterexample for some zero-dimensional scheme A), but being true in some interesting cases.

Question 1.3. Fix $q \in \mathbb{P}^{r}$ and a zero-dimensional scheme $A \subset Y$ minimally spanning q. Set $w:=\operatorname{dim}\langle\nu(A)\rangle$.
(1) Fix an integer x such that $w+1 \leq x \leq r$. Is there a zero-dimensional scheme B minimally spanning q with $\operatorname{dim}\langle\nu(B)\rangle=x$ and $\operatorname{deg}(B)=$ $\operatorname{deg}(A)+x-w ?$
(2) Is it (1) true at least if $x=w+1$?
(3) Is it true if in (1) we drop the condition $\operatorname{deg}(B)=\operatorname{deg}(A)+x-w$?
(4) Are (1) or (2) or (3) true if we only require it for a general $q \in\langle\nu(A)\rangle$?

Case (4) of Question 1.3 is known to be true if A is a finite set ([6, Theorem 3.8]).

We prove the strong form (1) of Question 1.3 if either A has at least one connected component of degree 1 (i.e., A has a single point as a connected component) or if A is a disjoint union of points and tangent vectors (Theorem 1.4 and Proposition 1.6). In the general case (i.e., for schemes for which either it is false or we do not know if it is true) we propose a measure of its failure (see Definition 1.9).
Theorem 1.4. Let $A \subset Y$ be a zero-dimensional scheme such that at least one connected component of A has degree 1. Assume $\langle\nu(A)\rangle \neq \cup_{A^{\prime} \subsetneq A}\left\langle n u\left(A^{\prime}\right)\right\rangle$ and fix $q \in\langle\nu(A)\rangle \backslash\left(\cup_{A^{\prime} \subsetneq A}\left\langle n u\left(A^{\prime}\right)\right\rangle\right)$. Set $w:=\operatorname{dim}\langle\nu(A)\rangle$. Then for each integer x with $w<x \leq r$ there is a zero-dimensional scheme $B \subset Y$ such that B minimally spans $q, \operatorname{deg}(B)=\operatorname{deg}(A)+x-w$ and $\operatorname{dim}\langle\nu(B)\rangle=x$.
Remark 1.5. Take the set-up of Theorem 1.4 and write $A=A_{1} \sqcup\{p\}$ with $p \in Y$. The proof of Theorem 1.4 given below constructs B with $B=A_{1} \sqcup S$ and S a finite set. In particular if A is a finite set we get as B a finite set, improving [6, Theorem 3.8] from a statement like part (4) to a statement like part (1) of Question 1.3.

Proposition 1.6. Let $A \subset Y$ be a zero-dimensional scheme such that $\nu(A)$ is linearly independent and each connected component of A has degree at most 2. Fix $q \in\langle\nu(A)\rangle$ such that $q \notin\left\langle\nu\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$. Then for each integer z such that $\operatorname{deg}(A)<z \leq r+1$ there is a zero-dimensional scheme $B \subset Y$ such that $\operatorname{deg}(B)=z, B$ minimally spans q and each connected component of B has degree at most 2.

Notation 1.7. For any $q \in \mathbb{P}^{r}$ let $\mathcal{S}(q)$ (resp. $\left.\mathcal{Z}(q)\right)$ denote the set of all finite sets (resp. zero-dimensional schemes) $A \subset Y$ such that $|A|=r_{X}(q)$ (resp. $\left.\operatorname{deg}(A)=c_{X}(q)\right)$ and $q \in\langle\nu(A)\rangle$.

Note that $\mathcal{S}(q) \neq \emptyset, \mathcal{Z}(q) \neq \emptyset$ and that if $A \in(\mathcal{S}(q) \cup \mathcal{Z}(q))$, then $q \notin\left\langle\nu\left(A^{\prime}\right)\right\rangle$ for any $A^{\prime} \subsetneq A$.

For each positive integer m let $\sigma_{m}(X) \subseteq \mathbb{P}^{r}$ denote the m-secant variety of X, i.e., the closure in \mathbb{P}^{r} of the union of all linear spaces $\langle B\rangle$ with B a finite subset of X with $|B|=m$. Each $\sigma_{m}(X)$ is an irreducible variety with $\operatorname{dim} \sigma_{m}(X) \leq \min \{m(n+1)-1, r\}$, where $n:=n_{1}+\cdots+n_{k}=\operatorname{dim} X$. The border rank $b_{X}(q)$ of $q \in \mathbb{P}^{r}$ is the minimal integer m such that $q \in \sigma_{m}(X)$. When $\operatorname{dim} \sigma_{m}(X)=m(n+1)-1$ many papers studied if $|\mathcal{S}(q)|=1$ for a general $q \in \sigma_{m}(X)([5,9,10,14-25,27,29,31])$. This problem is called uniqueness or generic uniqueness for $\sigma_{m}(X)$. If $m(n+1)-1=r$ (and so $\left.\sigma_{m}(X)=\mathbb{P}^{r}\right)$, almost never $|\mathcal{S}(q)|=1$ for a general $q \in \sigma_{m}(X)$ and the consensus is that the few cases with $|\mathcal{S}(q)|=1$ have some interesting geometry. If $m(n+1)-1<r$ the case with $|\mathcal{S}(q)|>1$ are usually very interesting and many papers proved (for certain $\left.k, n_{1}, \ldots, n_{k}\right)$ that if $r \gg m(n+1)$, then generic uniqueness holds. We may also ask if generic uniqueness holds for the set $\mathcal{Z}(q)$, but we do not have evidence for it, except a few cases with very low m. We need these cases to construct a counterexample to Question 1.3 (see Proposition 3.6).

Question 1.8. Let $X \subset \mathbb{P}^{r}$ be the Segre variety of a product of k projective spaces. Is $r_{X}(q) \leq k b_{X}(q)$ for all $q \in \mathbb{P}^{r}$?

Question 1.8 is true for all $q \in \mathbb{P}^{r}$ with $b_{X}(q) \leq 3$ ($[12$, Proposition 1.1 and Theorem 1.2], [1, Theorem 1], [4]). The question is motivated by a similar question concerning symmetric tensors, i.e., degree d homogeneous polynomials in $n+1$ variables, i.e., for the order d Veronese embedding of \mathbb{P}^{n}. For a Segre variety the number k of its positive dimensional factors is a weak substitute for the order of the Veronese embedding as evinced by the similarities between the classification of the ranks for tensors and symmetric tensors with very low border rank ($[1,2,4,12]$). Question 1.8 is in general false if we use $c_{X}(q)$ instead of $b_{X}(q)$, even for symmetric tensors when $k=3$ and for general homogeneous degree d polynomials in a high number of variables ([8]), but it may be true if instead of the cactus rank we consider the smoothable rank (i.e., in the definition of cactus rank we only allow smoothable zero-dimensional schemes) or the curvilinear rank (i.e., we only allow curvilinear zero-dimensional schemes in the definition ([3, Questions 1 and 2, Theorem 1]).

Definition 1.9. For any $q \in \mathbb{P}^{r}$ let $\delta_{X}(q)$ be the minimal integer $t>c_{X}(q)$ such that there is a degree t zero-dimensional scheme $A \subset Y$ with $q \in\langle\nu(A)\rangle$ and $A \nsupseteq Z$ for any $Z \in \mathcal{Z}(q)$.

Any scheme A as in Definition 1.9 minimally spans q. Proposition 3.4 gives an example with $\delta_{X}(q)-c_{X}(q) \geq 2$.

Question 1.10. What is the maximum of all $\delta_{X}(q)-c_{X}(q), q \in \mathbb{P}^{r}$?
Remark 1.11. Theorem 3.6 shows that $\delta_{X}(q) \leq r_{X}(q)+1$ for all $q \in \mathbb{P}^{r}$.
In our proofs we focus on one connected component E of A, say $A=A_{1} \sqcup E$; E is a point in Theorem 1.4. We think about $A_{1} \sqcup E$ as a partial additive decomposition of the tensor associated to $q \in \mathbb{P}^{r}$ (e.g. [26, Def. 1.30], [13] and references therein) (although it is not canonically associated to q, because in our proofs not even A is canonically associated to q) and we hope that this approach and the use of zero-dimensional schemes may be used for other additive decompositions.

2. The proofs

Recall that $Y=\mathbb{P}^{n_{1}} \times \cdots \times \mathbb{P}^{n_{k}}$ and that $X=\nu(Y)$, where $\nu: Y \rightarrow \mathbb{P}^{r}$, $r=-1+\prod_{i=1}^{k}\left(n_{i}+1\right)$, is the Segre embedding of the multiprojective space Y. Let $\pi_{i}: Y \rightarrow \mathbb{P}^{n_{i}}$ denote the projection onto the i-th factor of Y. Let $\eta_{i}: Y \rightarrow \prod_{j \neq i} \mathbb{P}^{n_{j}}$ denote the projection onto all factors of Y, except the i-th one.

Remark 2.1. Let $Z \subset Y$ be a zero-dimensional scheme, which is curvilinear, i.e., for each connected component E of Z the Zariski tangent space of E at the point $E_{\text {red }}$ has either dimension 0 (i.e., E is a point) or dimension 1 (and hence E is contained in the germ of a smooth curve). Then Z has finitely many subschemes and in particular it has finitely many subschemes of degree $\operatorname{deg}(Z)-1$. Thus if A is as in Proposition 1.6, then $\langle\nu(A)\rangle \supsetneq \cup_{A^{\prime} \subsetneq A}\left\langle\nu\left(A^{\prime}\right)\right\rangle$.

This is our main lemma.
Lemma 2.2. Fix a linear space $V \subset \mathbb{P}^{r}$ such that $\operatorname{dim} V \leq r-2$ and $p \in X$ such that $p \notin V$. Then there is a line $L \subset X$ such that $L \cap V=\emptyset$ and $p \in\langle L \cup V\rangle$.
Proof. Set $V^{\prime}:=\langle V \cup\{p\}\rangle$. Let $o=\left(o_{1}, \ldots, o_{k}\right)$ be the point such that $\nu(o)=p$. Set $T_{i}:=\eta_{i}^{-1}(o)$ and $T=T_{1} \cup \cdots \cup T_{k}$. Note that $\nu\left(T_{i}\right)$ is a projective space of dimension n_{i}, that $\nu\left(T_{i}\right) \cap \nu\left(T_{j}\right)=\{p\}$ for all $i \neq j$ and that T is the union of all lines of X passing through p. Since $\nu\left(T_{i}\right)$ is a linear space, $W_{i}:=V \cap \nu\left(T_{i}\right)$ is a linear subspace of V. Since $o \notin V$, we have $\operatorname{dim} W_{i} \leq n_{i}-1$. Let $M_{i} \subset Y$ be the set such that $\nu\left(M_{i}\right)=W_{i}$.
Claim 1. If there is $i \in\{1, \ldots, k\}$ such that $\operatorname{dim} W_{i} \leq n_{i}-2$ (with the convention $W_{i}=\emptyset$ if $n_{i}=1$), then there is a line $L \subset X$ such that $p \in L$ and $L \cap V=\emptyset$.

Proof of Claim 1. Take as L any line of $\nu\left(T_{i}\right)$ containing p and not intersecting W_{i}, e.g., a general line L of $\nu\left(T_{i}\right)$ containing p.

By Claim 1 we may assume $\operatorname{dim} W_{i}=n_{i}-1$ for all i. Since $\operatorname{dim} W_{i}=n_{i}-1$ and $p \notin W_{i}$, then V^{\prime} contains $\nu(T)$ and V^{\prime} is spanned by the union of V and any point of $\nu\left(T_{i}\right) \backslash W_{i}$ (for a single index i). Since $\operatorname{dim} V \leq r-2$, we have $V^{\prime} \neq \mathbb{P}^{r}$. Fix a general $x_{1} \in \mathbb{P}^{n_{1}}$ and set $x:=\left(x_{1}, o_{2}, \ldots, o_{k}\right)$. We have $x \in T_{1} \backslash M_{1}$. Set $R^{\prime \prime}:=\eta_{1}^{-1}\left(x_{1}\right) \cong \mathbb{P}^{n_{1}}$. Take a line (up to the identification of $R^{\prime \prime}$ with $\left.\mathbb{P}^{n_{1}}\right) R^{\prime} \subseteq R^{\prime \prime}$ with $x \in R^{\prime}$ and set $R:=\nu\left(R^{\prime}\right) . R$ is a line containing $\nu(x)$. Since $x \notin M_{1},\langle V \cup R\rangle$ contains T_{1} and hence contains p. Since $p \notin V$ and $\operatorname{dim} R=1$, either $R \cap V=\emptyset$ (and in this case we may take R as L) or $\langle R \cup V\rangle=V^{\prime}$. Thus we may assume that we are in the latter case for every line $R^{\prime} \subseteq R^{\prime \prime}$ with $x \in R^{\prime}$. Thus $\nu\left(R^{\prime \prime}\right) \subset V^{\prime}$. Take a general $x_{2} \in \mathbb{P}^{n_{2}}$ and set $x^{\prime}:=\left(x_{1}, x_{2}, o_{3}, \ldots, o_{k}\right)$. Set $D^{\prime \prime}:=\eta_{2}^{-1}\left(x_{2}\right) \cong \mathbb{P}^{n_{2}}$. Take a line (up to the identification of $D^{\prime \prime}$ with $\left.\mathbb{P}^{n_{2}}\right) D^{\prime} \subseteq D^{\prime \prime}$ with $x^{\prime} \in D^{\prime}$ and set $D:=\nu\left(D^{\prime}\right)$. D is a line containing $\nu\left(x^{\prime}\right)$. Since $x^{\prime} \notin M_{2},\langle V \cup D R\rangle$ contains $\nu\left(T_{2}\right)$ and hence contains p. Since $p \notin V$ and $\operatorname{dim} D=1$, either $D \cap V=\emptyset$ (and in this case we may take D as L) or $\langle D \cup V\rangle=V^{\prime}$. Thus we may assume that we are in the latter case for every line $D^{\prime} \subseteq D^{\prime \prime}$ with $x^{\prime} \in D^{\prime}$. Thus $\nu\left(D^{\prime \prime}\right) \subset V^{\prime}$. We see that V^{\prime} contains all points $\nu\left(\left(x_{1}, x_{2}, o_{3}, \ldots, o_{k}\right)\right)$. If $k=2$ we get $V^{\prime}=\mathbb{P}^{r}$, a contradiction. Now assume $k>2$. Take a general $x_{3} \in \mathbb{P}^{n_{3}}$ and set $y=\left(x_{1}, x_{2}, x_{3}, o_{4}, \ldots, o_{k}\right) \in T_{3} \backslash M_{3}$. Set $R_{1}:=\eta_{3}^{-1}\left(x_{3}\right)$. We use R_{1} as we used $D^{\prime \prime}$. Since W_{3} is a hyperplane of $\nu\left(T_{3}\right)$ we get that V^{\prime} contains all $\nu\left(y_{1}, y_{2}, y_{3}, o_{k}, \ldots, o_{k}\right)$ with $\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}} \times \mathbb{P}^{n_{3}}$. If $k=3$ we get $V^{\prime}=\mathbb{P}^{r}$, a contradiction. If $k>3$ we use first η_{4}, then η_{5}, and so on.

Proof of Theorem 1.4. Write $A=A_{1} \sqcup\{o\}$ with $o \notin\left(A_{1}\right)_{\text {red }}$. Set $V:=\left\langle\nu\left(A_{1}\right)\right\rangle$. Since A minimally spans q, we have $\nu(o) \notin V$. By Lemma 2.2 there is a line $L \subset X$ such that $V \cap L=\emptyset$ and $o \in\langle V \cup L\rangle$. Fix two general points $p_{1}, p_{2} \in L$, write $p_{i}=\nu\left(q_{i}\right), i=1,2$, and set $B:=A_{1} \cup\left\{q_{1}, q_{2}\right\}$. Since $\nu\left(A_{1}\right) \subseteq V$ and $o \in\langle V \cup L\rangle$, we have $q \in\langle\nu(B)\rangle$. To conclude the proof when $x=w+1$ it is sufficient to prove that for each $B^{\prime} \subsetneq B$ we have $q \notin\left\langle\nu\left(B^{\prime}\right)\right\rangle$. Since for each $B^{\prime} \subsetneq B$ there is a scheme $B^{\prime \prime}$ with $B^{\prime} \subseteq B^{\prime \prime} \subset B$ and $\operatorname{deg}\left(B^{\prime \prime}\right)=\operatorname{deg}(B)-1$, it is sufficient to test all $B^{\prime} \subset B$ with $\operatorname{deg}\left(B^{\prime}\right)=\operatorname{deg}(B)-1=\operatorname{deg}(A)$.

First assume that $B^{\prime} \supset A_{1}$, i.e., $B^{\prime}=A_{1} \sqcup\left\{q_{i}\right\}$ for some i. Since p_{1}, p_{2} are general in L, we have $o \neq q_{i}$ for all i. Since $\operatorname{dim}\left\langle\nu\left(A_{1}\right) \cup L\right\rangle=\operatorname{dim}\left\langle A_{1}\right\rangle+2$, we have $\operatorname{dim}\left\langle\nu\left(A_{1}\right) \cup\{a\}\right\rangle=\operatorname{dim}\left\langle A_{1}\right\rangle+1$ if $a \in\left\{\nu(o), p_{1}, p_{2}\right\}$ and the linear spaces $\left\langle\nu\left(A_{1}\right) \cup\{a\}\right\rangle, a \in\left\{\nu(o), p_{1}, p_{2}\right\}$, are different. Thus $\left\langle\nu\left(A_{1}\right) \cup\left\{p_{i}\right\}\right\rangle \cap\left\langle\nu\left(A_{1}\right) \cup\right.$ $\{\nu(o)\}\rangle=\left\langle\nu\left(A_{1}\right)\right\rangle$. Hence $q \notin\left\langle\nu\left(B^{\prime}\right)\right\rangle$.

Now assume $A_{1} \nsubseteq B^{\prime}$, i.e., $B^{\prime}=A_{2} \sqcup\left\{q_{1}, q_{2}\right\}$ with $A_{2} \subset A_{1}$ and $\operatorname{deg}\left(A_{2}\right)=$ $\operatorname{deg}\left(A_{1}\right)-1$. Since $L=\left\langle\left\{p_{1}, p_{2}\right\}\right\rangle$ and $V \cap L=\emptyset$, we get $\left\langle\nu\left(B^{\prime}\right)\right\rangle \cap\langle\nu(A)\rangle=$ $\left\langle\nu\left(A_{2} \cup\{o\}\right)\right\rangle$ and so $q \notin\left\langle\nu\left(B^{\prime}\right)\right\rangle$.

The scheme B solves the case $x=w+1$ and it has a degree 1 connected component. If $r>w+1$ we just apply the proof to B instead of A and conclude by induction on the integer $x-w$.

For any zero-dimensional scheme $Z \subset Y$ set $Y[Z]:=\prod_{i=1}^{k}\left\langle\pi_{i}(Z)\right\rangle$, where the linear span $\left\langle\pi_{i}(Z)\right\rangle$ is taken in $\mathbb{P}^{n_{i}}$. Note that $Y[Z] \subseteq Y$ is the minimal multiprojective subspace of Y containing Z and that the i-th factor of $Y[Z]$ has dimension at most $\min \left\{n_{i}, \operatorname{deg}(Z)-1\right\}$.

To prove Proposition 1.6 we first need the case $\operatorname{deg}(A)=2$ and A connected, i.e., when A is a tangent vector of Y.

Lemma 2.3. Let $\tau(X) \subset \mathbb{P}^{r}$ denote the tangential variety of X. Since X is smooth, we have $\tau(X)=\cup_{p \in X} T_{p} X$. Since each element of $T_{p} X \backslash\{p\}$ is contained in a line through p and each such a line is spanned by a tangent vector of X at p, v exists. Fix any $q \in \tau(X) \backslash X$ with $r:=r_{X}(q)>1$. Let $v \subset Y$ be a connected degree 2 scheme such that $q \in\langle\nu(v)\rangle$. Then there is a degree 3 scheme $B=u \sqcup\{p\}$ with u a connected degree 2 scheme, $u_{\mathrm{red}}=v_{\mathrm{red}}$, $\langle\nu(v)\rangle \subset\langle\nu(B)\rangle$ and $q \notin\left\langle\nu\left(B^{\prime}\right)\right\rangle$ for any $B^{\prime} \subsetneq B$.
Proof. It is sufficient to find $B \subset Y[v]$ and hence we may assume $Y=Y[v]$. Since $Y[v] \cong\left(\mathbb{P}^{1}\right)^{r}$ (by the proof of $[1$, Theorem 1]), in this proof we assume $k=r$ and $n_{i}=1$ for all i. Set $\{o\}:=v_{\text {red }}$ and write $o=\left(o_{1}, \ldots, o_{k}\right)$. Set $T_{i}:=\eta_{i}^{-1}\left(o_{i}\right), i=1, \ldots, k$, and $T:=T_{1} \cup \cdots \cup T_{k}$. Note that each $\nu\left(T_{i}\right)$ is a line through $\nu(o)$. Moreover, $\operatorname{dim}\langle\nu(T)\rangle=r$ and hence for each $p_{i} \in T_{i} \backslash\{o\}$, $i=1, \ldots, k$, the set $\nu\left(\left\{o, p_{1}, \ldots, p_{k}\right\}\right)$ is linearly independent and spans $\langle\nu(T)\rangle$. We have $\nu(v) \subset\langle\nu(T)\rangle$. For each $i \in\{1, \ldots, k\}$ set $\hat{T}_{i}:=\cup_{j \neq i} T_{i}$. We have $\operatorname{dim}\left\langle\nu\left(\hat{T}_{i}\right)\right\rangle=r-1, \nu(v) \subset\langle\nu(T)\rangle, \nu(v) \cap\left\langle\nu\left(\hat{T}_{i}\right)\right\rangle=\nu(o)$ and $\langle\{q, \nu(o)\}\rangle=$ $\langle\nu(v)\rangle$. The proof of [1, Theorem 1] also gave the existence of $p_{i} \in T_{i} \backslash\{o\}$ such that $q \in\left\langle\nu\left(\left\{p_{1}, \ldots, p_{k}\right\}\right)\right\rangle$. Thus for each $i=1, \ldots, k$ the set $\left\langle\left\{q, \nu\left(p_{i}\right), \nu(o)\right\}\right\rangle$ is a plane contained in $\langle\nu(T)\rangle$ and hence the set $L_{i}:=\left\langle\nu\left(\hat{T}_{i}\right)\right\rangle \cap\left\langle\left\{q, \nu\left(p_{i}\right), \nu(o)\right\}\right\rangle$ is a line through $\nu(o)$. Any such line is a tangent line to X at $\nu(o)$ and so there is a degree 2 connected zero-dimensional scheme $v_{i} \subset Y$ such that $\{o\}=\left(v_{i}\right)_{\text {red }}$ and $L_{i}=\left\langle\nu\left(v_{i}\right)\right\rangle$. Fix any i and set $u:=v_{i}, p:=p_{i}$ and $B:=v_{i} \cup\left\{p_{i}\right\}$. Since $u_{\text {red }}=\{o\} \neq\{p\}$, we have $\operatorname{deg}(B)=3$. Since $q \in\left\langle\nu\left(\left\{p_{1}, \ldots, p_{k}\right\}\right)\right\rangle$ and $\left\{p_{1}, \ldots, p_{k}\right\} \backslash\left\{p_{i}\right\} \subset \hat{T}_{i}$, we have $q \in\left\langle L_{i} \cup\left\{p_{i}\right\}\right\rangle=\langle\nu(B)\rangle$. Since $\nu(o) \in$ $\left\langle\nu\left(v_{i}\right)\right\rangle \subset\langle\nu(B)\rangle$, we have $\langle\nu(v)\rangle \subset\langle\nu(B)\rangle$. Since $r>1$ and $\nu\left(\left\{o, p_{i}\right\}\right) \subset \nu\left(T_{i}\right)$, we have $\left.q \notin\left\langle\nu\left(\left\{o, p_{i}\right)\right\}\right)\right\rangle$. Since $\left\langle\nu\left(v_{i}\right)\right\rangle \subset\left\langle\nu\left(\hat{T}_{i}\right)\right\rangle$ and $q \notin\left\langle\nu\left(\hat{T}_{i}\right)\right\rangle$, we have $q \notin\left\langle\nu\left(B^{\prime}\right)\right\rangle$ for any $B^{\prime} \subsetneq B$.

Proof of Proposition 1.6. We use induction on the integer $\operatorname{deg}(A)$, the starting point of the induction, i.e., the case $\operatorname{deg}(A)=1$, being true by Theorem 1.4.

If A has at least one degree 1 connected component, then we may apply Theorem 1.4. Now assume that each connected component of A has degree 2. If $\operatorname{deg}(A)=2$, then Lemma 2.3 gives the case $w=3$ and we apply Theorem 1.4 to the degree 3 scheme given by Lemma 2.3. Now assume $\operatorname{deg}(A) \geq 4$ and write $A=A_{1} \sqcup v$ with v connected $\operatorname{deg}(v)=2$. Set $\{o\}:=v_{\text {red }}$. Since $\nu(A)$ is linearly independent, we have $\left\langle\nu\left(A_{1}\right)\right\rangle \cap\langle\nu(v)\rangle=\emptyset$ and hence there are unique $q_{1} \in\left\langle\nu\left(A_{1}\right)\right\rangle$ and $q_{2} \in\langle\nu(v)\rangle$ such that $q \in\left\langle\left\{q_{1}, q_{2}\right\}\right\rangle$. By [12, Proposition 1.1] or [1, Theorem 1] we have $1 \leq r_{X}\left(q_{2}\right) \leq k$.

First assume $r_{X}\left(q_{2}\right)=1$. Thus there is $a \in X$ with $\nu(a)=q_{2}$. Since $q_{2} \in\langle\nu(v)\rangle$ and $\left\langle\nu\left(A_{1}\right)\right\rangle \cap\langle\nu(v)\rangle=\emptyset,\{a\}$ is a connected component of $A_{1} \cup\{a\}$. Since $A_{1} \cup\{a\}$ minimally spans q, we may apply Theorem 1.4 to $A_{1} \cup\{a\}$ and conclude the proof of Proposition 2.3 in this case.

From now on we assume $r:=r_{X}\left(q_{2}\right)>1$. Set $\{o\}:=v_{\text {red }}$. We need the set-up of the proof of Lemma 2.3, which in turn uses the set-up of [1]. We have $Y[v]=\left(\mathbb{P}^{1}\right)^{r}$. Call $B_{1}=u \sqcup\{p\}$ one of the schemes given by Lemma 2.3 for q_{2} and v with u connected of degree 2 . In particular $u_{\text {red }}=\{o\}$ and $p \neq o$. Since $\langle\nu(v)\rangle \subset\left\langle\nu\left(B_{1}\right)\right\rangle$, we have $q \in\left\langle\nu\left(A_{1} \cup B_{1}\right)\right\rangle$. We also know that for any $E \subsetneq B_{1}$, we have $q_{2} \notin\langle\nu(E)\rangle$. To get u, p we made some choices and the main one was to fix one of the r non-trivial factors of $Y[v]$, say the one corresponding to the index $i \in\{1, \ldots, k\}$. The points p and o have the same coordinates, except the i-th one. To stress that the pair (u, p) depends from the choice of i, we write it as $(u[i], p[i])$. We take the set-up of the proof of Lemma 2.3, but now we have $Y[v]=\left(\mathbb{P}^{1}\right)^{r}$. We permute the factors of Y so that the first r factors of Y are the r non-trivial factors of $Y[v]$. With this convention we have $T_{i}:=\eta_{i}^{-1}\left(o_{i}\right)$, $1 \leq i \leq r$, and $T=T_{1} \cup \cdots \cup T_{r}$ and we have defined $(u[i], p[i])$ if and only if $1 \leq i \leq r$. Note that $T_{\nu(o)} \nu(Y[v])=\langle\nu(T)\rangle$, where $T_{\nu(o)} \nu(Y[v]) \subset \mathbb{P}^{r}$ is the Zariski tangent space at $\nu(o)$ to the r-dimensional smooth variety $\nu(Y[v])$ (the set $T_{\nu(o)} \nu(Y[v])$ is an r-dimensional linear subspace of $\left.\mathbb{P}^{r}\right)$.
Claim 1. Proposition 1.6 is true when $T_{\nu(o)} \nu(Y[v]) \subseteq\langle\nu(A)\rangle$.
Proof of Claim 1. Assume $T_{\nu(o)} \nu(Y[v]) \subseteq\langle\nu(A)\rangle$. Recall that

$$
\langle\nu(v)\rangle \subset T_{\nu(o)} \nu(Y[v]) \text { and }\left\langle\nu\left(A_{1}\right)\langle\cap\langle\nu(v)\rangle=\emptyset .\right.
$$

Thus $\left\langle\nu\left(A_{1}\right)\right\rangle \cap T_{\nu(o)} \nu(Y[v])$ is an $(r-2)$-dimensional linear subspace E of $T_{\nu(o)} \nu(Y[v])$ with $E \cap\langle\nu(v)\rangle=\emptyset$ and $F:=\langle\{\nu(o)\} \cup E\rangle$ is an $(r-1)$-dimensional linear subspace of $T_{\nu(o)} \nu(Y[v])$ with $F \cap\langle\nu(v)\rangle=\{\nu(o)\}$. Since $T_{\nu(o)} \nu(Y[v])=$ $\langle\nu(T)\rangle$, for any $a_{i} \in T_{i} \backslash\{o\}, i=1, \ldots, r$, the set $\left\{\nu(o), \nu\left(a_{1}\right), \ldots, \nu\left(a_{r}\right)\right\}$ is linearly independent and it spans $T_{\nu(o)} \nu(Y[v])$. Thus there is $i \in\{1, \ldots, r\}$ such that $\langle\nu(A)\rangle=\left\langle\nu\left(A_{1} \cup\left\{o, a_{1}\right\}\right)\right\rangle$. Apply Theorem 1.4 to q and $A_{1} \cup\left\{o, a_{1}\right\}$.

Let $B^{\prime} \subseteq A_{1} \cup B_{1}$ be the minimal subscheme of $A_{1} \cup B_{1}$ such that $q \in\langle\nu(B)\rangle$. Every connected component of B^{\prime} has degree at most 2 .
(a) Assume $\operatorname{deg}\left(B^{\prime}\right)>\operatorname{deg}(A)$, i.e., $B^{\prime}=A_{1} \cup B_{1} . \quad B^{\prime}$ solves the case $x=w+1$. Since B^{\prime} minimally spans q and B^{\prime} has a degree 1 connected components, Theorem 1.4 applied to $\left(q, B^{\prime}\right)$ gives all cases with $x>w+1$.
(b) Assume $\operatorname{deg}\left(B^{\prime}\right)=\operatorname{deg}(A)$. If $B^{\prime}=A_{1} \cup\{o, p\}$, then we may apply Theorem 1.4 to $\left(q, B^{\prime}\right)$ and get all $x>w$. Now assume $B^{\prime}=E \cup B_{1}$ with $E \subset A_{1}$ and $\operatorname{deg}(E)=\operatorname{deg}\left(A_{1}\right)-1$. The scheme E has 2 connected components of degree 1 and hence all cases with $x>w$ are true by Theorem 1.4 applied to the pair $\left(q, B^{\prime}\right)$. Now assume $B^{\prime}=A_{1} \cup u$. Since $u \neq v$ we have $B^{\prime} \cap A=A \cup\{o\}$. Since $q \in\left\langle\nu\left(B^{\prime}\right)\right\rangle \cap\langle\nu(A)\rangle$ and $q \notin\left\langle\nu\left(A_{1} \cup\{o\}\right)\right\rangle$, we get $\left\langle\nu\left(A_{1} \cup u\right)\right\rangle=\langle\nu(A)\rangle$. Since $u \neq v$ and $\nu(v) \subset \nu\left(B_{1}\right)$, we get $\nu(p) \in\langle\nu(A)\rangle$. Assume that this is true for all $i=1, \ldots, r$, i.e., that $\nu(p[i]) \in\langle\nu(A)\rangle$ for $i=1, \ldots, r$. Since
$p[i] \in T_{i} \backslash\{o\}$, the set $\left\{\nu(o), \nu\left(p_{1}\right), \ldots, \nu\left(p_{r}\right)\right\}$ spans $\langle\nu(T)\rangle=T_{\nu(o)}(\nu(Y[v])$. Since $\nu(o) \in\langle\nu(A)\rangle$, it is sufficient to use Claim 1.
(c) Assume $\operatorname{deg}\left(B^{\prime}\right)<\operatorname{deg}(A)$. If B^{\prime} has at least one connected component of degree 1 , then we may apply Theorem 1.4 to $\left(q, B^{\prime}\right)$, because B^{\prime} minimally spans q. Now assume that all connected components of B^{\prime} have degree 2 (as the ones of A) and so $B^{\prime}=A_{2} \cup u$ with A_{2} union of some of the connected components of A_{1}. Since $q \in\langle\nu(A)\rangle \backslash\left\langle\nu\left(A_{1} \cup\{o\}\right)\right\rangle$, we get $\nu(u) \subset\langle\nu(A)\rangle$. We conclude as in step (b) using Claim 1.

3. The examples

Example 3.1. Assume $n_{1} \geq 2$ and take a plane $M \subseteq \mathbb{P}^{n_{1}}$. If $k>1$ fix $a_{i} \in \mathbb{P}^{n_{i}}$ for all $i>1$ and let $j: M \rightarrow Y$ be the embedding with $\pi_{i}(j(x))=a_{i}$ for all $i>1$ and $\pi_{1}(j(x))=x, x \in M$. Let $C \subset M$ be a smooth plane cubic. Let $o \in C$ be one of its 9 flexes and $A=4 o \subset C$ the degree 4 effective divisor of C with o as its reduction. Note that A spans M, but that it is not linearly independent and that each proper subscheme of A is contained in the tangent line L of C at o. The scheme $\nu(j(A))$ is not linearly independent, but it minimally spans each point of $\nu(j(M \backslash L))$.

Example 3.2. Assume $k \geq 2$. Take $M:=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and take any embedding j : of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ into Y as a multiprojective subspace. Let $C \in\left|\mathcal{O}_{M}(3,3)\right|$ be a smooth curve such that there is $o \in C$ such that the line $L \in\left|\mathcal{O}_{M}(1,0)\right|$ intersects C at o with multiplicity 3 . Let $A \subset C$ be the effective degree 4 divisor of C with o as its reduction. The scheme $\nu(j(A))$ is not linearly independent, but it minimally spans any point of $\langle\nu(j(A)\rangle \backslash \nu(j(L))$.

Example 3.3. Assume $k \geq 2$ and $n_{2} \geq 2$, so that Y contains the multiprojective space $Y^{\prime}:=\mathbb{P}^{1} \times \mathbb{P}^{2}$. Fix $o \in \mathbb{P}^{2}$ and $a_{1}, a_{2}, a_{3} \in \mathbb{P}^{1}$ with $a_{i} \neq a_{j}$ for all $i \neq j$. Let v_{i} be the general tangent vector of Y^{\prime} at $\left(a_{i}, o\right)$. We have $\operatorname{dim}\left\langle\nu\left(v_{1} \cup v_{2} \cup v_{3}\right)\right\rangle=4$ (and so $\nu\left(v_{1} \cup v_{2} \cup v_{3}\right)$ is not linearly independent), $\operatorname{dim}\langle\nu(B)\rangle=3$ for any degree 5 subscheme $B \subset v_{1} \cup v_{2} \cup v_{3}$, and $v_{1} \cup v_{2} \cup v_{3}$ has only 3 degree 5 subschemes. Thus $v_{1} \cup v_{2} \cup v_{3}$ minimally spans a general $q \in\left\langle\nu\left(v_{1} \cup v_{2} \cup v_{3}\right)\right\rangle$. This example shows that the linear independence assumed in Proposition 1.6 is not a consequence of the existence of some $q \in\langle\nu(A)\rangle$ such that A minimally spans q. Now assume $n_{1}+\cdots+n_{k}>3$, i.e., assume $Y^{\prime} \neq Y$. Take a general $p \in Y \backslash Y^{\prime}$ and set $A:=v_{1} \cup v_{2} \cup v_{3} \cup\{p\}$. A minimally spans a general $q \in\langle\nu(A)\rangle$, but $\nu(A)$ is not linearly independent; this is an example relevant to both Theorem 1.4 and Proposition 1.6.

Let $D \subset Y$ be an effective divisor. For any scheme $Z \subset Y$ let $\operatorname{Res}_{D}(Z)$ denote the residual scheme of Z with respect to D, i.e., the closed subscheme of Y with $\mathcal{I}_{Z}: \mathcal{I}_{D}$ as its ideal sheaf. We have $\operatorname{Res}_{D}(Z) \subseteq Z$. If Z is zerodimensional, then $\operatorname{deg}(Z)=\operatorname{deg}\left(\operatorname{Res}_{D}(Z)\right)+\operatorname{deg}(Z \cap D)$. Note that $Z \subset D$ if and only if $\operatorname{Res}_{D}(Z)=\emptyset$.

Remark 3.4. Assume $k \geq 3$. Then $\mathcal{Z}(q)=\mathcal{S}(q)$ and $|\mathcal{S}(q)|=1$ for a general $q \in \sigma_{2}(X)$.

Proof. Since $k \geq 2$ we have $X \subsetneq \sigma_{2}(X)$ and so $c_{X}(q)=2$. A general $u \in \tau(X)$ has rank k. Since $k \geq 3$, we get that $\tau(X)$ is a proper subvariety of $\sigma_{2}(X)$. Since q is general, we get $\mathcal{Z}(q)=\mathcal{S}(q)$. The generic uniqueness is very classical and true for $k=3, n_{1}=n_{2}=n_{3}=1$ by the case $a=2$ of [17, Theorem 1.2] and then true for all $k \geq 3$ and $n_{i} \geq 1$, by an inductive method as in [10].

Proposition 3.5. Take $q \in \tau(X) \backslash X$. We have $|\mathcal{Z}(q)|=1$ if and only if $r_{X}(q) \geq 3$.
Proof. Set $m:=r_{X}(q)$. Since $q \notin X$, we have $r_{X}(q)>1$. We have $c_{X}(q)=2$. Fix any connected degree 2 zero-dimensional scheme Z such that $q \in\langle\nu(Z)\rangle$. Let $Y^{\prime} \subseteq Y$ be a minimal multiprojective space such that $q \in\left\langle\nu\left(Y^{\prime}\right)\right\rangle$. The proof of $\left[1\right.$, Theorem 1] gives $Y^{\prime}=Y[Z] \cong\left(\mathbb{P}^{1}\right)^{m}$. If $m=2$ we get that $\mathcal{S}(q)$ is infinite and 2-dimensional and (in characteristic $\neq 2) \mathcal{Z}(q) \backslash \mathcal{S}(q)$ is infinite and 1-dimensional. Now assume $m>2$. Since $m>2$, each element of $\mathcal{Z}(q)$ is connected. Assume the existence of $A \in \mathcal{Z}(q)$ such that $A \neq Z$. We saw that $Y[A]=Y[Z]$ and so it is sufficient to consider the case $Y=Y^{\prime}$, i.e., the case $k=m$ and $n_{i}=1$ for all i. Write $\{o\}:=Z_{\text {red }},\{a\}:=A_{\text {red }}, o=\left(o_{1}, \ldots, o_{m}\right)$ and $a=\left(a_{1}, \ldots, a_{m}\right)$.

First assume $a=o$. In this case the two distinct lines $\langle\nu(Z)\rangle$ and $\langle\nu(A)\rangle$ meets only at $\nu(a)$ and so $q=\nu(a)$ has rank 1 , contradicting our assumption.

Now assume $a \neq o$, say $a_{1} \neq o_{1}$. Set $D:=\pi_{1}^{-1}\left(a_{1}\right)$. We have $\operatorname{Res}_{D}(A)=\{a\}$ and $\operatorname{Res}_{D}(Z)=Z$. Assume for the moment $a_{j} \neq o_{j}$ for some $j>1$, say $a_{2} \neq o_{2}$. Set $D^{\prime}:=\pi_{2}^{-1}\left(a_{2}\right)$. We have $\operatorname{Res}_{D+D^{\prime}}(A)=\emptyset$ and $\operatorname{Res}_{D+D^{\prime}}(Z)=Z$. Let $\gamma:\left(\mathbb{P}^{1}\right)^{m} \rightarrow\left(\mathbb{P}^{1}\right)^{m-2}$ denote the projection onto the last $m-2$ factors of $\left(\mathbb{P}^{1}\right)^{m}$. Since $m>2$ and Z is general, $\gamma_{\mid Z}$ is an embedding. Thus $h^{1}\left(\mathcal{I}_{Z}(0,0,1 \ldots, 1)\right)=$ $h^{1}\left(\left(\mathbb{P}^{1}\right)^{m-2}, \mathcal{I}_{\gamma(Z)}(1, \ldots, 1)\right)=0$. Since $\operatorname{Res}_{D+D^{\prime}}(A)=\emptyset$ and $\operatorname{Res}_{D+D^{\prime}}(Z) \neq \emptyset$, [2, Lemma 5.1(a)] gives a contradiction. Now assume $a_{j}=o_{j}$ for all $j>1$. Set $T:=\pi_{m}^{-1}\left(a_{m}\right)$. We have $\operatorname{Res}_{T}(Z \cup A)=\{o, a\}$ and hence $\operatorname{Res}_{T}(A) \cap \operatorname{Res}_{T}(Z)=$ \emptyset. Since $a_{1} \neq o_{1}$, we have $a \neq o$ and $h^{1}\left(\mathcal{I}_{\{o, a\}}(1, \ldots, 1,0)\right)=0$, contradicting [2, Lemma 5.1(a)].

Proposition 3.6. Assume $k \geq 5$ and $n_{i} \geq 2$ for all i. Let $Z \subset Y$ be a general degree 3 connected curvilinear scheme. Fix $q \in\langle\nu(Z)\rangle$ such that $q \notin\left\langle\nu\left(Z^{\prime}\right)\right\rangle$ for any $Z^{\prime} \subsetneq Z$.
(a) $\mathcal{Z}(q)=\{Z\}$.
(b) $A \supset Z$ for any degree 4 scheme A such that $q \in\langle\nu(A)\rangle$.

Proof. Since Y is smooth and connected, the set of all its connected curvilinear subschemes with a prescribed degree is irreducible. The proof of [4] gives $Y[Z] \cong\left(\mathbb{P}^{2}\right)^{k}$ (more precisely, this is the only case with $Y[Z] \cong\left(\mathbb{P}^{2}\right)^{k}$, i.e., it is the only case with $\operatorname{dim} Y[Z]=2 k)$ and $r_{X}(q)=2 k-1>3$. Thus no element of $\mathcal{Z}(q)$ is reduced. Since $2 k-1>k$, we have $q \notin \tau(X)$ ([12, Proposition 1.1],
[1, Theorem 1]). Thus $c_{X}(q)=3$. Assume the existence of $B \in \mathcal{Z}(q) \backslash\{Z\}$. Since $2 k-1>k+1$ and any element of $\tau(X)$ has rank at most k ($[12$, Proposition 1.1], [1, Theorem 1]), B is connected. By the list of cases (i), (ii), (iii) and (v) in [12, Theorem 1.2] we see that B is curvilinear. Since $r_{X}(q)=2 k-1$, we see that $\left\langle\pi_{i}(B)\right\rangle=2$ for all i. Take any $D \in\left|\mathcal{I}_{B}(1,1,0, \ldots 0)\right|$ (it exists, because $h^{0}\left(\mathbb{P}^{2} \times \mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2} \times \mathbb{P}^{2}}(1,1)\right)=9$. We have $\operatorname{Res}_{D}(B)=\emptyset$ and $\operatorname{Res}_{D}(Z) \subseteq Z$ and so $\operatorname{Res}_{D}(B \cup Z) \subseteq Z$. Let $\gamma: Y \rightarrow \prod_{i=3}^{k} \mathbb{P}^{n_{i}}\left(\right.$ resp. $\left.\alpha: Y \rightarrow \mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}}\right)$ denote the projection of Y onto the product of its last $k-2$ factors (resp. its first two factors). Since Z is general and $k \geq 4, \gamma_{\mid Z}$ is an embedding and so $h^{1}\left(\mathcal{I}_{Z}(0,0,1, \ldots, 1)\right)=h^{1}\left(\prod_{i=3}^{k} \mathbb{P}^{n_{i}}, \mathcal{I}_{\gamma(Z)}(1, \ldots, 1)\right)$. Since Z is general, $\gamma(Z)$ is the general degree 3 curvilinear subscheme of $\prod_{i=3}^{k} \mathbb{P}^{n_{i}}$ and in particular $\pi_{3}(\gamma(Z))=\pi_{3}(Z)$ spans a plane. Hence $h^{1}\left(\prod_{i=3}^{k} \mathbb{P}^{n_{i}}, \mathcal{I}_{\gamma(Z)}(1, \ldots, 1)\right)=0$. Thus $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{D}(B \cup Z)}(0,0,1, \ldots, 1)\right)=0 . \operatorname{Since} \operatorname{Res}_{D}(B)=\emptyset,[2$, Lemma 5.1(a)] gives $Z \subset D$, i.e., $\left|\mathcal{I}_{\alpha(Z)}(1,1)\right| \subseteq\left|\mathcal{I}_{\alpha(A)}(1,1)\right|$. Since Z is general, $\alpha_{\mid Z}$ is an embedding and $\alpha(Z)$ is a general connected degree 3 zero-dimensional subscheme of $\mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}}$. Since $n_{1} \geq 2$ and $n_{2} \geq 2$, we see that $h^{1}\left(\mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}}, \mathcal{I}_{\alpha(Z)}(1,1)\right)=0$ and that $\alpha(Z)$ is the scheme-theoretic base locus of $\left|\mathcal{I}_{\alpha(Z)}(1,1)\right|$. Thus $\alpha(Z)=$ $\alpha(B)$, i.e., $\pi_{i}(Z)=\pi_{i}(B)$ for $i=1,2$. Using the first and the i-th factor of Y, $i=3, \ldots, k$, of Y instead of the first and the second one, we get $\pi_{i}(B)=\pi_{i}(Z)$ for all i, i.e., $B=Z$, a contradiction.

Now we prove part (b). For every $i \in\{1, \ldots, k\}$ let $\varepsilon_{i} \in \mathbb{N}^{k}$ be the multiindex $\left(d_{1}, \ldots, d_{k}\right)$ with $d_{i}=1$ and $d_{j}=0$ for all $j \neq 1$. By part (a) we may assume $\operatorname{deg}(A)=4$. We repeat the proof of (a) with A instead of B. We get $\operatorname{deg}(\alpha(A))=4$ (i.e., $\alpha_{\mid A}$ is an embedding) and $\left|\mathcal{I}_{\alpha(A)}(1,1)\right| \subsetneq$ $\left|\mathcal{I}_{\alpha(Z)}(1,1)\right|$. Since $\operatorname{dim}\left|\mathcal{I}_{\alpha(Z)}(1,1)\right|=\operatorname{dim}\left|\mathcal{O}_{\mathbb{P}^{n_{1}} \times \mathbb{P}^{n_{2}}}(1,1)\right|-3$, we get $h^{1}\left(\mathbb{P}^{n_{1}} \times\right.$ $\left.\mathbb{P}^{n_{2}}, \mathcal{I}_{\alpha(A)}(1,1)\right)=0$. Since $\alpha_{\mid A}$ is an embedding, we get $h^{1}\left(\mathcal{I}_{A} \varepsilon_{1}+\varepsilon_{2}\right)=0$. Using any two other factors of Y instead of the first two ones we get $h^{1}\left(\mathcal{I}_{A} \varepsilon_{i}+\varepsilon_{j}\right)=$ 0 for all $i \neq j$ and hence $h^{1}\left(\mathcal{I}_{A}\left(a_{1}, \ldots, a_{k}\right)=0\right.$ for all $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{N}^{k}$ with at least 2 positive components. Since $k \geq 4$ we get $h^{1}\left(\mathcal{I}_{A^{\prime}}(1, \ldots, 1,0,0)=0\right.$ for any $A^{\prime} \subseteq A$. Take $T \in\left|\mathcal{I}_{Z} \varepsilon_{k-1}+\varepsilon_{k}\right|$. We have $\operatorname{Res}_{T}(Z)=\emptyset$ and so $\operatorname{Res}_{T}(Z \cup A) \subseteq A . S$ Since $\operatorname{Res}_{T}(Z)=\emptyset$ and $h^{1}\left(\mathcal{I}_{\operatorname{Res}_{T}(Z \cup A)}(1, \ldots, 1,0,0)\right)=0$, [2, Lemma 5.1(a)] gives $A \subset T$. Thus $\left|\mathcal{I}_{Z}(0, \ldots, 0,1,1)\right| \subseteq\left|\mathcal{I}_{A}(0, \ldots, 0,1,1)\right|$. Since we proved that $\operatorname{dim}\left|\mathcal{I}_{A}(0, \ldots, 0,1,1)\right|=\operatorname{dim}\left|\mathcal{O}_{Y}(0, \ldots, 0,1,1)\right|-4$, we get a contradiction.

3.1. A toy example

Here we give a toy example, which shows why we think that our approach works in many cases. Suppose you have $q \in \mathbb{P}^{r}$ and a zero-dimensional scheme $A \subset Y$ minimally spanning q with $A=A_{1} \sqcup A_{2}$. Assume that we may control A_{2} so that for any q_{2} minimally spanned by A_{2} we may find a "nice" $B_{1} \subset Y$ with $q_{2} \in\left\langle\nu\left(B_{1}\right)\right\rangle$; here "nice" may mean that it has al least one degree 1 component, so that $A_{1} \cup B_{1}$ has at least one degree 1 connected component, so that we may apply Theorem 1.4 to $A_{2} \cup B_{1}$. There are $q_{1} \in\left\langle\nu\left(A_{1}\right)\right\rangle$ and $q_{2} \in\left\langle\nu\left(A_{2}\right)\right\rangle$
such that $q \in\left\langle\left\{q_{1}, q_{2}\right\}\right\rangle$ and the points q_{1}, q_{2} are uniquely determined by q if and only if $\left\langle\nu\left(A_{1}\right)\right\rangle \cap\left\langle\nu\left(A_{2}\right)\right\rangle=\emptyset$. Using q_{2} and A_{2} we get B_{1}. We have $q \in\left\langle\nu\left(A_{1} \cup B_{1}\right)\right\rangle$. If $A_{1} \cup B_{1}$ minimally span q (this is always the case if $\left.\left\langle\nu\left(A_{1}\right)\right\rangle \cap\left\langle\nu\left(B_{1}\right)\right\rangle=\emptyset\right)$, then we may use $A_{1} \cup B_{1}$, except that $\operatorname{dim}\left\langle\nu\left(A_{1} \cup B_{1}\right)\right\rangle$ and $\operatorname{deg}\left(A_{1} \cup B_{1}\right)$ depends on B_{1} (you need to get $\operatorname{deg}\left(B_{1}\right)$ as small as possible); this is exactly how we used Lemma 2.2 to prove Theorem 1.4. If $A_{1} \cup B_{1}$ does not minimally span q, we take $B^{\prime} \subset A_{1} \cup B_{1}$ which minimally spans q. If $A_{1} \cap B_{1}=\emptyset$ and $B^{\prime} \supseteq B_{1}$, we use B^{\prime}, because B_{1} is a union of some of the connected components of B^{\prime}. The practical implementation of this approach (and the technical problems that may arise in its use) are mirrored in our use of Lemma 2.3 in the proof of Proposition 1.6.

References

[1] E. Ballico, Tensor ranks on tangent developable of Segre varieties, Linear Multilinear Algebra 61 (2013), no. 7, 881-894.
[2] E. Ballico and A. Bernardi, Stratification of the fourth secant variety of Veronese varieties via the symmetric rank, Adv. Pure Appl. Math. 4 (2013), no. 2, 215-250.
[3] , Curvilinear schemes and maximum rank of forms, Matematiche (Catania) 72 (2017), no. 1, 137-144.
[4] , On the ranks of the third secant variety of Segre-Veronese embeddings, arXiv: 1701.06845.
[5] E. Ballico, A. Bernardi, and L. Chiantini, On the dimension of contact loci and the identifiability of tensors, arXiv: 1706.02746.
[6] E. Ballico, A. Bernardi, L. Chiantini, and E. Guardo, Bounds on the tensor rank, arXiv: 1705.02299.
[7] A. Bernardi, J. Brachat, and B. Mourrain, A comparison of different notions of ranks of symmetric tensors, Linear Algebra Appl. 460 (2014), 205-230.
[8] A. Bernardi and K. Ranestad, On the cactus rank of cubics forms, J. Symbolic Comput. 50 (2013), 291-297.
[9] C. Bocci and L. Chiantini, On the identifiability of binary Segre products, J. Algebraic Geom. 22 (2013), no. 1, 1-11.
[10] C. Bocci, L. Chiantini, and G. Ottaviani, Refined methods for the identifiability of tensors, Ann. Mat. Pura Appl. (4) 193 (2014), no. 6, 1691-1702.
[11] W. Buczyńska and J. Buczyński, Secant varieties to high degree veronese reembeddings, catalecticant matrices and smoothable Gorenstein schemes, J. Algebraic Geom. 23 (2014), 63-90.
[12] J. Buczyński and J. M. Landsberg, On the third secant variety, J. Algebraic Combin. 40 (2014), no. 2, 475-502.
[13] M. V. Catalisano, L. Chiantini, A. V. Geramita, and A. Oneto Waring-like decompositions of polynomials, 1, Linear Algebra Appl. 533 (2017), 311-325.
[14] L. Chiantini and C. Ciliberto, On the concept of k-secant order of a variety, J. London Math. Soc. (2) 73 (2006), no. 2, 436-454.
[15] _, On the dimension of secant varieties, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 5, 1267-1291.
[16] L. Chiantini, M. Mella, and G. Ottaviani, One example of general unidentifiable tensors, J. Algebr. Stat. 5 (2014), no. 1, 64-71.
[17] L. Chiantini and G. Ottaviani, On generic identifiability of 3-tensors of small rank, SIAM J. Matrix Anal. Appl. 33 (2012), no. 3, 1018-1037.
[18] L. Chiantini, G. Ottaviani, and N. Vannieuwenhoven, An algorithm for generic and lowrank specific identifiability of complex tensors, SIAM J. Matrix Anal. Appl. 35 (2014), no. 4, 1265-1287.
[19] , On generic identifiability of symmetric tensors of subgeneric rank, Trans. Amer. Math. Soc. 369 (2017), no. 6, 4021-4042.
[20] , Effective criteria for specific identifiability of tensors and forms, SIAM J. Matrix Anal. Appl. 38 (2017), no. 2, 656-681.
[21] H. Derksen, Kruskal's uniqueness inequality is sharp, Linear Algebra Appl. 438 (2013), no. 2, 708-712.
[22] I. Domanov and L. De Lathauwer, On the uniqueness of the canonical polyadic decomposition of third-order tensors-Part I: Basic results and uniqueness of one factor matrix, SIAM J. Matrix Anal. Appl. 34 (2013), no. 3, 855-875.
[23] , On the uniqueness of the canonical polyadic decomposition of third-order tensors-Part II: Uniqueness of the overall decomposition, SIAM J. Matrix Anal. Appl. 34 (2013), no. 3, 876-903.
[24] , Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL, SIAM J. Matrix Anal. Appl. 36 (2015), no. 4, 1567-1589.
[25] F. Galuppi and M. Mella, Identifiability of homogeneous polynomials and Cremona Transformations, Preprint arXiv:1606.06895, 2016; To appear in J. Reine Angew. Math.; DOI: https://doi.org/10.1515/crelle-2017-0043.
[26] A. Iarrobino and V. Kanev, Power Sums, Gorenstein Algebras, and Determinantal Loci, Lecture Notes in Mathematics, 1721, Springer-Verlag, Berlin, 1999.
[27] J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra and Appl. 18 (1977), no. 2, 95-138.
[28] J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics, 128, American Mathematical Society, Providence, RI, 2012.
[29] M. Mella, Singularities of linear systems and the Waring problem, Trans. Amer. Math. Soc. 358 (2006), no. 12, 5523-5538.
[30] K. Ranestad and F.-O. Schreyer, On the rank of a symmetric form, J. Algebra 346 (2011), 340-342.
[31] N. D. Sidiropoulos and R. Bro, On the uniqueness of multilinear decomposition of N-way arrays, J. Chemometrics 14 (2000), 229-239.

Edoardo Ballico
Department of Mathematics
University of Trento
38123 Povo (TN), Italy
Email address: ballico@science.unitn.it

[^0]: Received October 25, 2017; Revised January 4, 2018; Accepted February 1, 2018.
 2010 Mathematics Subject Classification. 14N05, 15A69.
 Key words and phrases. tensor rank, tensor decomposition, cactus rank, zero-dimensional scheme, Segre embedding.

 The author was partially supported by MIUR and GNSAGA of INdAM (Italy).

