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BI-LIPSCHITZ PROPERTY AND DISTORTION THEOREMS

FOR PLANAR HARMONIC MAPPINGS WITH M-LINEARLY

CONNECTED HOLOMORPHIC PART

Jie Huang and Jian-Feng Zhu

Abstract. Let f = h + g be a harmonic mapping of the unit disk D
with the holomorphic part h satisfying that h is injective and h(D) is

an M -linearly connected domain. In this paper, we obtain the sufficient

and necessary conditions for f to be bi-Lipschitz, which is in particular,
quasiconformal. Moreover, some distortion theorems are also obtained.

1. Introduction

A complex-valued function f(z) of class C2 is said to be a harmonic mapping,
if it satisfies fzz̄ = 0. Assume that f(z) is a harmonic mapping defined in a
simply connected domain Ω ⊆ C. Then f(z) has the canonical decomposition

f(z) = h(z) + g(z), where h(z) and g(z) are analytic in Ω. For more details on
planar harmonic mappings we refer to ([6], [13]). Let D(a, r) = {z : |z−a| < r}
be the disk center at a with the radius r, D = {z : |z| < 1} be the unit disk,
and ∂D = {z : |z| = 1} be the unit circle. Throughout this paper we consider
harmonic mappings f(z) in D.

For any z = reiθ ∈ D and α ∈ [0, π], the directional derivative of f is defined
by

(1) ∂αf(z) = lim
r→0+

f(z + reiα)− f(z)

r
= eiαfz(z) + e−iαfz̄(z).

Then, we have

(2) max
0≤α<2π

|∂αf(z)| = Λf (z) = |fz(z)|+ |fz̄(z)|
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and

(3) min
0≤α<2π

|∂αf(z)| = λf (z) = ||fz(z)| − |fz̄(z)|| .

It is known from [9] that f(z) is locally univalent and sense-preserving in D
if and only if its Jacobian satisfies the following condition

Jf (z) = |fz(z)|2 − |fz̄(z)|2 > 0 for z ∈ D.

For a sense-preserving harmonic mapping f(z) = h(z) + g(z) in D, let

(4) ω(z) =
g′(z)

h′(z)

be the (second) complex dilatation of f . Then ω(z) is a holomorphic mapping
of D and

(5) ‖ω‖∞ := sup
z∈D
‖ω(z)‖ ≤ 1.

Throughout this paper we assume that f is sense-preserving.
Given K ≥ 1 and assume that f(z) is a sense-preserving univalent harmonic

mapping of D. Then f(z) is called a harmonic K-quasiconformal mapping if
there exists a constant k such that

sup
z∈D

∣∣∣∣fz̄(z)fz(z)

∣∣∣∣ ≤ k =
K − 1

K + 1
.

A mapping f(z) defined in D is said to be co-Lipschitz (resp. Lipschitz) in
D if there exists a constant L such that the following inequality

(6)
|z1 − z2|

L
≤ |f(z1)− f(z2)| (resp. |f(z1)− f(z2)| ≤ L|z1 − z2|)

holds for all z1, z2 ∈ D, where L ≥ 1 is called the Lipschitz constant. f is said
to be bi-Lipschitz if f is co-Lipschitz and Lipschitz.

A sense-preserving harmonic bi-Lipschitz mapping is always quasiconformal,
while the converse is not true, in general (cf. [14]).

Denote by SH the family of all sense-preserving univalent harmonic map-
pings defined in D which admit a canonical representation f = h+ g, where

(7) h(z) = z +
∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n

are analytic in D. The class S0
H is the subclass of SH with g′(0) = 0, see ([4])

for more details.
A domain Ω ⊂ C is said to be M -linearly connected if there exists a positive

constant M ∈ [1,∞) such that for any two points z, w ∈ Ω are joined by a path
γ ⊂ Ω with

l(γ) ≤M |z − w|, where l(γ) =

∫
γ

|dz|.

It is easy to see that a 1-linearly connected domain is convex. We remark
here that in this paper, we always assume such a path γ mentioned above is
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rectifiable and bounded by M |z − w|. We refer to [10] for the definition of
rectifiably M -arcwise connected domain (see also properly M -arcwise connected
domain). For extensive discussions on this topic, see the references [1], [2] and
[12].

A function f ∈ C1(D) is said to be M -linearly connected if f is injective and
f(D) is an M -linearly connected domain.

In what follows, the notation L∞(D) denotes the set of all complex-valued,
measurable functions which are essentially bounded in D.

In 2007, M. Chuaqui et al. proved the following theorem.

Theorem A ([3, Theorem 1]). Let h : D → C be a holomorphic univalent
map. Then there exists c > 0 such that every harmonic mapping f = h + ḡ
with dilatation ‖ω‖∞ < c is univalent if and only if h(D) is a linearly connected
domain.

The proof of Theorem 1 shows that one can take c = 1 when h is convex, an
important special case that they state separately as the following corollary.

Corollary 1 ([3, Corollary]). Let h be analytic and convex in D. Then every
harmonic mapping of the form f = h+ ḡ with ‖ω‖∞ < 1 is injective.

We point out that f = h + ḡ is univalent in D doesn’t imply that h is
univalent in D. Also, f is quasiconformal in D then f doesn’t need to be co-
Lipschitz or Lipschitz in D. It is related to the domain f(D). One can refer to
[8] and [11] for the discussion of how can a sense-preserving harmonic mapping
f in D be quasiconformal and bi-Lipschitz, with the image domain f(D) is
a bounded convex domain. Based on these facts and motivated by Theorem
1, in this paper assume that f = h + ḡ is a harmonic mapping in D such
that its holomorphic part h is M -linearly connected. Then we prove that f
is bi-Lipschitz in D if and only if there exists a constant 0 < c < 1 such that
‖ω‖∞ < c and log |h′| ∈ L∞(D). See Theorem 1 and Remark 1. Moreover,
some distortion theorems are also considered in Section 3.

We will first prove some lemmas which are elementally but useful in the
section 2 and then give the main results and their proofs in Section 3.

2. Auxiliary results

The following lemmas are useful and will be used in proving our main results.

Lemma 1. Given M ≥ 1, let f ∈ C1(D) be M -linearly connected. Then f(z)
is co-Lipschitz if and only if there exists c1 > 0 such that λf (z) ≥ c1 holds for
all z ∈ D.

Proof. We first prove the only if part. Since f(z) is co-Lipschitz, then there
exists L > 0 such that

|f(z1)− f(z2)| ≥ |z1 − z2|
L
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for all z1, z2 ∈ D. For z2 = z ∈ D, let r small enough such that z1 = z+reiθ ∈ D.
Then we have ∣∣∣∣f(z + reiθ)− f(z)

reiθ

∣∣∣∣ ≥ 1

L
.

By letting r → 0, we obtain

(8) lim
r→0

∣∣∣∣f(z + reiθ)− f(z)

reiθ

∣∣∣∣ = |eiθfz(z) + e−iθfz(z)| ≥
1

L
.

Thus

λf (z) = min
θ∈[0,π]

|eiθfz(z) + e−iθfz(z)| ≥
1

L
.

Now we prove the if part. Assume that there exists c1 > 0 such that λf (z) ≥ c1
holds for all z ∈ D. Take z1, z2 ∈ D, with z1 6= z2. Since Ω = f(D) is an M -
linearly connected domain, we see that there exists a rectifiable path γ in Ω
connecting the points ζ1 = f(z1) and ζ2 = f(z2) such that

(9) l(γ) ≤M |f(z1)− f(z2)|.

Since f(z) ∈ C1(D) is an injective function of D with λf (z) ≥ c1 > 0, we see
that Jf (z) > 0 for every z ∈ D. Therefore, f is a C1-diffeomorphism of D
onto Ω. Let g = f−1 : Ω 7→ D be the inverse function of f . Then g(ζ) is a
C1-diffeomorphism of Ω onto D such that the following inequality

|g(ζ1)− g(ζ2)| ≤
∫
g(γ)

|dg(ζ)| ≤
∫
γ

Λg(ζ)|dζ|

holds for all ζ1, ζ2 ∈ Ω. Elementary calculations lead to gζ = fz
Jf

and gζ̄ = −fz̄
Jf

.

This shows that Λg(ζ) = 1
λf
≤ 1

c1
. By using (9), we have

|g(ζ1)− g(ζ2)| ≤ 1

c1
l(γ) ≤ M

c1
|ζ1 − ζ2|.

Therefore,

|f(z1)− f(z2)| ≥ c1
M
|z1 − z2|.

This shows that f(z) is co-Lipschitz. �

Lemma 2. Let f ∈ C1(D). Then f(z) is Lipschitz if and only if there exists a
constant c2 > 0 such that Λf (z) ≤ c2 holds for all z ∈ D.

Proof. We first prove the only if part. According to the assumption, we know
that f is Lipschitz. Therefore there exists L > 0 such that

|f(z1)− f(z2)| ≤ L|z1 − z2|

holds for all z1, z2 ∈ D. Let z2 = z ∈ D for r small enough such that z1 =
z + reiθ ∈ D. Then ∣∣∣∣f(z + reiθ)− f(z)

reiθ

∣∣∣∣ ≤ L.
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Letting r → 0, we obtain

(10) lim
r→0

∣∣∣∣f(z + reiθ)− f(z)

reiθ

∣∣∣∣ = |eiθfz(z) + e−iθfz(z)| ≤ L.

Thus Λf (z) = max
θ∈[0,π]

|eiθfz(z) + e−iθfz(z)| ≤ L.

Now we prove the if part. Assume that there exists c2 > 0 such that Λf (z) ≤ c2
holds for all z ∈ D. Take z1, z2 ∈ D, let C : z = z(t) = z1 + t(z2 − z1) be the
segment line which joining z1 and z2, and γ = f(C). Then

|f(z1)− f(z2)| ≤
∫
γ

|df(z)|

=

∫
C

|fz(z(t))eiα + fz(z(t))e
−iα||dz(t)|

≤ |z1 − z2|
∫ 1

0

Λfdt

≤ c2|z1 − z2|,

where α = arg(z1 − z2). This implies that f(z) is Lipschitz. �

Lemma 3. Given M ≥ 1, let f = h+g be a harmonic mapping of D such that
h is M -linearly connected. Then the inequality

(11) |h(z1)− h(z2)| ≥M‖ω‖∞|g(z1)− g(z2)|

holds for all z1, z2 ∈ D. If additionally M‖ω‖∞ < 1, then f is univalent in D.

Proof. Let Ω = h(D). For any two points ζ1, ζ2 ∈ Ω, since Ω is an M -linearly
connected domain, we see that there exists a path Γ : [0, 1] 7→ Ω connecting
the points ζ1 = Γ(0) and ζ2 = Γ(1) such that l(Γ) ≤M |ζ1 − ζ2|.

Consider the holomorphic mapping ϕ(ζ) = g ◦ h−1(ζ), where ζ = h(z) ∈ Ω
and z ∈ D. Then we have

(12) |ϕ′(ζ)| =
∣∣∣∣ g′(z)h′(z)

∣∣∣∣ ≤ ‖ω‖∞.
Therefore we have

|ϕ(ζ1)− ϕ(ζ2)| =
∣∣∣∣∫

Γ

dϕ

∣∣∣∣
≤
∫

Γ

|dϕ| ≤ ‖ω‖∞
∫

Γ

|dζ|

≤ ‖ω‖∞M |ζ1 − ζ2|.

This shows that

(13) sup
ζ1,ζ2∈Ω

∣∣∣∣ϕ(ζ1)− ϕ(ζ2)

ζ1 − ζ2

∣∣∣∣ ≤M‖ω‖∞.
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Thus
|g ◦ h−1(ζ1)− g ◦ h−1(ζ2)|

|ζ1 − ζ2|
≤M‖ω‖∞.

Using z = h−1(ζ), then

(14) |g(z1)− g(z2)| ≤M‖ω‖∞|h(z1)− h(z2)|.

If additionally M‖ω‖∞ < 1, then we have

|f(z1)− f(z2)| ≥ |h(z1)− h(z2)| − |g(z1)− g(z2)|
≥ (1−M‖ω‖∞)|h(z1)− h(z2)| > 0

hold for all z1, z2 ∈ D. This shows that f is univalent in D. �

3. Main results

Theorem 1. For M ≥ 1, let f = h + g be a harmonic mapping in D. If h is
M -linearly connected, then the following statements hold.

(I) If ‖ω‖∞ < 1
M and log |h′| ∈ L∞(D), then f is a bi-Lipschitz mapping

in D and its Lipschitz constant L is related to M and ‖ω‖∞.
(II) Let f be a bi-Lipschitz mapping of D with its Lipschitz constant L ≥ 1.

Then

‖ω‖∞ ≤
L2 − 1

L2 + 1
and log |h′| ∈ L∞(D).

Furthermore, we have f(D) is an M1-linearly connected domain with M1 =

ML2 1+‖ω‖∞
1−‖ω‖∞ .

Proof. (I) Since log |h′| ∈ L∞(D), this shows that there exist constants 0 <
c1 ≤ c2 < +∞ such that c1 ≤ |h′(z)| ≤ c2 hold for all z ∈ D. For any
z1, z2 ∈ D, with z1 6= z2, let ζ1 = h(z1) and ζ2 = h(z2). Since h is an injective,
analytic function in D (and therefore h ∈ C1(D)), with |h′| ≥ c1 and h(D) is
an M -linearly connected domain, it follows from the proof of the “if ” part in
Lemma 1 that

|h(z1)− h(z2)| ≥ c1|z1 − z2|
M

.

Applying (11), we have

|f(z1)− f(z2)| ≥ (1−M‖ω‖∞)|h(z1)− h(z2)| ≥ c1(1−M‖ω‖∞)

M
|z1 − z2|.

This shows that f(z) is co-Lipschitz.
On the other hand, assume that C : z = z(t) = z1 + t(z2 − z1), 0 ≤ t ≤ 1,

be the line segment which joining z1 and z2. Let Γ = f(C). Then

|f(z1)− f(z2)| ≤
∫

Γ

|df(z)| =
∫
C

|fz(z(t))dz(t) + fz(z(t))dz(t)|

= |z1 − z2|
∫ 1

0

|fz(z(t))eiα + fz(z(t))e
−iα|dt
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≤ |z1 − z2|
∫ 1

0

|fz(z(t))|
(

1 +

∣∣∣∣fz(z(t))fz(z(t))

∣∣∣∣) dt
≤ |z1 − z2|

∫ 1

0

|h′(z(t))| (1 + ‖ω‖∞) dt

= |z1 − z2|(1 + ‖ω‖∞)

∫ 1

0

|h′(z(t))|dt

≤ |z1 − z2|(1 + ‖ω‖∞)c2,

where α = arg(z1 − z2). Let L = max{(1 + ‖ω‖∞)c2,
M

c1(1−M‖ω‖∞)}, then

1

L
≤
∣∣∣∣f(z1)− f(z2)

z1 − z2

∣∣∣∣ ≤ L
hold for all z1, z2 ∈ D.

(II) According to the assumption, we have

1

L
≤
∣∣∣∣f(z1)− f(z2)

z1 − z2

∣∣∣∣ ≤ L
hold for all z1, z2 ∈ D, where L ≥ 1. By using (8) and (10), we have

Λf (z) = max
θ∈[0,π]

|eiθfz(z) + e−iθfz(z)| ≤ L

and

λf (z) = min
θ∈[0,π]

|eiθfz(z) + e−iθfz(z)| ≥
1

L

hold true for all z ∈ D. This implies that

Λf (z)

λf (z)
=
|h′(z)|+ |g′(z)|
|h′(z)| − |g′(z)|

=
1 +

∣∣∣ g′(z)h′(z)

∣∣∣
1−

∣∣∣ g′(z)h′(z)

∣∣∣ ≤ L2.

Hence
∣∣∣ g′(z)h′(z)

∣∣∣ ≤ L2−1
L2+1 holds for all z ∈ D. Therefore, we obtain that

‖ω‖∞ = sup
z∈D

∣∣∣∣ g′(z)h′(z)

∣∣∣∣ ≤ L2 − 1

L2 + 1
< 1.

Furthermore, since

L ≥ Λf (z) ≥ λf (z) = |h′(z)|
(

1−
∣∣∣∣ g′(z)h′(z)

∣∣∣∣) ≥ |h′(z)|(1− ‖ω‖∞)

and

1

L
≤ λf (z) ≤ Λf (z) = |h′(z)|

(
1 +

∣∣∣∣ g′(z)h′(z)

∣∣∣∣) ≤ |h′(z)|(1 + ‖ω‖∞)

we have

|h′(z)| ≤ L

1− ‖ω‖∞
(15)
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and

|h′(z)| ≥ 1

L(1 + ‖ω‖∞)
(16)

hold true. This shows that

(17) log |h′| ∈ L∞(D)

as desired. Now we prove f(D) is an M1-linearly connected domain. For any
w1, w2 ∈ f(D), let Γ be arbitrary curve in f(D) which joining w1 and w2. l =
f−1(Γ) is the curve in D with the end points z1 = f−1(w1) and z2 = f−1(w2).
γ̃ = h(l) is the curve in h(D) with the end points ζ1 = h(z1) and ζ2 = h(z2).
Note that h(D) is an M -linearly connected domain, then

l(Γ) =

∫
Γ

|df(z)| =
∫
l

|fz(z(t))eiβ + fz(z(t))e
−iβ ||dz(t)|

≤
∫
l

|fz(z(t))|
(

1 +

∣∣∣∣fz(z(t))fz(z(t))

∣∣∣∣) |dz(t)|
≤ (1 + ‖ω‖∞)

∫
l

|h′(z(t))||dz(t)|

= (1 + ‖ω‖∞)lγ̃

≤M(1 + ‖ω‖∞)|ζ1 − ζ2|,

where β = arg dz(t) for l : z = z(t).
Let C : z = z(t) = z1+t(z2−z1) be the line segment which joining z1 and z2,

γ = h(C) is the curve in h(D) with the end points ζ1 = h(z1) and ζ2 = h(z2).
Then (15) yields that

|ζ1 − ζ2| ≤
∫
γ

|dh(z)|

≤
∫
C

|h′(z(t))||dz(t)|

= |z1 − z2|
∫ 1

0

|h′(z(t))|dt

≤ |z1 − z2|
L

1− ‖ω‖∞
.

Therefore,

l(Γ) ≤ML
1 + ‖ω‖∞
1− ‖ω‖∞

|z1 − z2| ≤ML2 1 + ‖ω‖∞
1− ‖ω‖∞

|f(z1)− f(z2)|.

This shows that f(D) is an M1-linearly connected domain, where

M1 = ML2 1 + ‖ω‖∞
1− ‖ω‖∞

.

The proof is completed. �
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Remark 1. (1) Under the assumptions of Theorem 1, by using Lemma 1 and
Lemma 2, we know that log |h′| ∈ L∞(D) is equivalent to h is bi-Lipschitz.

(2) If f = h+ ḡ is quasiconformal (not bi-Lipschitz) in D, then log |h′| <∞
does not need to hold. We show this by using the following function

f(z) = h(z) + g(z) = (1− z)α + k(1− z)α,
where 0 < α < 1 and 0 < k < 1

M ≤ 1.

Theorem 2. Given M ≥ 1, f = h+ g is a harmonic mapping of D such that
h is M -linearly connected. If ‖ω‖∞ < 1

M , then

(I) Tθ = h+ eiθg is univalent in D, for all θ ∈ [0, 2π]. Moreover, Tθ(D) is

an M1-linearly connected domain, where M1 = M(1+‖ω‖∞)
1−M‖ω‖∞ .

(II) If f can be extended continuously to the boundary, then there exist
positive constants c2 and c3 < 2 such that for ζ1, ζ2 ∈ ∂D,

|f(ζ1)− f(ζ2)| ≥ c2|ζ1 − ζ2|c3 ,
where c2 depends on M .

Proof. (I) Take arbitrary two points z1, z2 ∈ D. According to (14) we see that

|Tθ(z1)− Tθ(z2)| ≥ |h(z1)− h(z2)| − |g(z1)− g(z2)|
≥ (1−M‖ω‖∞)|h(z1)− h(z2)|.

Since M‖ω‖∞ < 1 and h(z) is injective, we know that

|Tθ(z1)− Tθ(z2)| ≥ (1−M‖ω‖∞)|h(z1)− h(z2)| > 0.

This shows that Tθ(z) is univalent in D for all θ ∈ [0, 2π].
For w ∈ h(D), let

(18) H(w) = Tθ(h
−1(w)) = w + eiθg ◦ h−1(w).

Then we have H(w) is holomorphic in h(D) with H ′(w) = 1 + eiθω(w).
Fixed two points ξ1 = Tθ(z1) and ξ2 = Tθ(z2) ∈ Tθ(D) and let γ ⊂ Tθ(D)

be the curve which joining ξ1 and ξ2. Since h(D) is an M -linearly connected
domain, we know that for any two points w1, w2 ∈ h(D), there is a curve
Γ ⊂ h(D) joining w1 and w2 such that l(Γ) ≤ M |w1 − w2|. Now we set
γ = H(Γ). Then

l(γ) =

∫
γ

|dH(w)|

≤
∫

Γ

(1 + ‖ω‖∞)|dw|

= (1 + ‖ω‖∞)l(Γ)

≤ (1 + ‖ω‖∞)M |w1 − w2|.

Applying (11) we know that

|ξ1 − ξ2| = |Tθ(z1)− Tθ(z2)|(19)
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≥ |h(z1)− h(z2)| − |g(z1)− g(z2)|
≥ (1−M(‖ω‖∞))|h(z1)− h(z2)|
= (1−M‖ω‖∞)|w1 − w2|.

This shows that

l(γ) ≤ M(1 + ‖ω‖∞)

1−M‖ω‖∞
|ξ1 − ξ2|.

Thus Tθ(D) is an M1-linearly connected domain, where M1 = M(1+‖ω‖∞)
1−M‖ω‖∞ .

(II) By [12, Proposition 5.6] we know that Tθ is continuous in D with values
in C ∪ {∞}. Applying [12, Proposition 5.7(5)] to Tθ, we see that there are
constants c2 > 0 and c3 < 2 such that for ζ2, ζ2 ∈ ∂D,

(20) |Tθ(ζ1)− Tθ(ζ2)| ≥ c2|ζ1 − ζ2|c3 .

Inequality (20) and the arbitrary taking of θ shows that

|f(ζ1)− f(ζ2)| ≥ c2|ζ1 − ζ2|c3 .

This completes the proof. �

Remark 2. The following lemma easily follows from [7, Proposition 2.1].

Lemma B. If for any ε with |ε| = 1, the function h + εg is univalent in D,
then f = h+ g is univalent in D, where h and g are holomorphic in D.

Therefore, one can easily obtain that Tθ(z) is univalent in D (one of the
results in Theorem 2) implies that f(z) is univalent in D (the result in Lemma
3).

Furthermore, under the assumption of Theorem 2 we have f(D) is also an
M1-linearly connected domain.

Theorem 3. Given M ≥ 1, and assume that f = h+ g is a sense-preserving
harmonic mapping of D such that h is M -linearly connected with

(21) h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=2

bnz
n.

If ‖ω‖∞ < 1
M , then we have the results as follows.

(I) The coefficients of (21) satisfying

|an|+ |bn| ≤ n for all n ≥ 2.

(II) The inequalities

(22) Λf (z) ≤ 1 + |z|
(1− |z|)3

,

(23) λf (z) ≥ 1− |z|
(1 + |z|)3

,
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and

(24)
|z|

(1 + |z|)2
≤ |f(z)| ≤ |z|

(1− |z|)2

hold for all z ∈ D.

Proof. (I) According to Theorem 2, we see that Tθ(z) = h(z) + eiθg(z) is
univalent in D for all θ ∈ [0, 2π). Since h and g are normalized by (21), we
know that

h(z) + eiθg(z) = z +

∞∑
n=2

anz
n + eiθ

∞∑
n=2

bnz
n

= z +

∞∑
n=2

(an + eiθbn)zn ∈ S.

Therefore, using the Bieberbach coefficients conjecture (see [5]) we obtain

|an + eiθbn| ≤ n, for θ ∈ [0, 2π) and n ≥ 2.

Therefore,

|an|+ |bn| = max
θ∈[0,2π)

|an + eiθbn| ≤ n for n ≥ 2.

(II) Since Tθ(z) ∈ S, it follows from the distortion theorem in S that

1− |z|
(1 + |z|)3

≤ |T ′θ(z)| ≤
1 + |z|

(1− |z|)3
, z ∈ D.

This shows in particular that

|h′(z)| − |g′(z)| = min
θ∈[0,2π)

|T ′θ(z)| ≥
1− |z|

(1 + |z|)3
, z ∈ D(25)

and

|h′(z)|+ |g′(z)| = max
θ∈[0,2π)

|T ′θ(z)| ≤
1 + |z|

(1− |z|)3
, z ∈ D.(26)

Fix z ∈ D. The last inequality (26) shows that

|f(z)| =
∣∣∣∣∫

Γ

fζ(ζ)dζ + fζ̄(ζ)dζ

∣∣∣∣
≤
∫

Γ

(|h′(ζ)|+ |g′(ζ)|)|dζ|

≤
∫ |z|

0

(1 + ρ)

(1− ρ)3
dρ

=
|z|

(1− |z|)2
,
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where Γ is the radial line segment from 0 to z. Next let γ be the preimage
under f of the radial segment from 0 to f(z). Then

|f(z)| =
∫
γ

∣∣fζ(ζ)dζ + fζ̄(ζ)dζ
∣∣

≥
∫
γ

(|h′(ζ)| − |g′(ζ)|)|dζ|

≥
∫ |z|

0

(1− ρ)

(1 + ρ)3
dρ

=
|z|

(1 + |z|)2
,

which completes the proof. �

Theorem 4. Let f = h + g denote a sense-preserving harmonic mapping in
the unit disk D such that h is injective and h(D) is a convex domain. Then for
all z1, z2 ∈ D, z1 6= z2 we have

|g(z1)− g(z2)| < |h(z1)− h(z2)|

and f is a univalent harmonic close-to-convex mapping.
Furthermore, if f is a harmonic quasiconformal mapping, then the inequality

|g(z1)− g(z2)| ≤ ‖ω‖∞|h(z1)− h(z2)|

holds for all z1, z2 ∈ D.

Proof. For all z1, z2 ∈ D, z1 6= z2. Since h(D) is a convex domain, there exists
a line Γ : t 7→ th(z2) + (1 − t)h(z1), t ∈ [0, 1] satisfies Γ([0, 1]) ⊂ h(D). Let
ζ = h(z). Then

|g(z1)− g(z2)| =
∣∣g ◦ h−1(h(z1))− g ◦ h−1(h(z2))

∣∣
=

∣∣∣∣∫
Γ

d(g ◦ h−1)(ζ)

dζ
dζ

∣∣∣∣
<

∫
Γ

|dζ| = |h(z1)− h(z2)|

the above inequality holds because
∣∣∣d(g◦h−1)(ζ)

dζ

∣∣∣ =
∣∣∣ g′(z)h′(z)

∣∣∣ < 1. Thus

|f(z1)− f(z2)| = |h(z1)− h(z2) + g(z1)− g(z2)|
≥ |h(z1)− h(z2)| − |g(z1)− g(z2)| > 0.

According to Clunie Sheil-Small’s result [4], we know that f(z) is a close-to-
convex mapping. If f(z) is a harmonic quasiconformal mapping, then

‖ω‖∞ = sup
z∈D

∣∣∣∣ g′(z)h′(z)

∣∣∣∣ < 1,
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therefore

|g(z1)− g(z2))| ≤ ‖ω‖∞|h(z1)− h(z2)|.
This completes the proof. �

Acknowledgments. The authors of this paper express their appreciation to
the anonymous referees’ valuable suggestions to improve this paper.

References

[1] S. Chen, S. Ponnusamy, and X. Wang, Stable geometric properties of pluriharmonic and

biholomorphic mappings, and Landau-Bloch’s theorem, Monatsh. Math. 177 (2015),

no. 1, 33–51.
[2] , Linear connectivity, Schwarz-Pick lemma and univalency criteria for planar

harmonic mapping, Acta Math. Sin. (Engl. Ser.) 32 (2016), no. 3, 297–308.

[3] M. Chuaqui and R. Hernández, Univalent harmonic mappings and linearly connected
domains, J. Math. Anal. Appl. 332 (2007), no. 2, 1189–1194.

[4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser.

A I Math. 9 (1984), 3–25.
[5] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2,

137–152.
[6] P. Duren, Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics, 156,

Cambridge University Press, Cambridge, 2004.

[7] R. Hernández and M. J. Mart́ın, Stable geometric properties of analytic and harmonic
functions, Math. Proc. Cambridge Phil. Soc. 155 (2013), no. 2, 343–359.

[8] D. Kalaj, Quasiconformal and harmonic mappings between Jordan domains, Math. Z.

260 (2008), no. 2, 237–252.
[9] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull.

Amer. Math. Soc. 42 (1936), no. 10, 689–692.
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